
Sample Based Face Caricature Generation

Heung-Yeung Shum† Ying-Qing Xu† Michael F. Cohen‡ Hua Zhong§

†Microsoft Research Asia
{hshum,yqxu}@microsoft.com

‡Microsoft Research
mcohen@microsoft.com

§Carnegie Mellon University
zhonghh@cs.cmu.edu

(a) (b) (c) (d)

Figure 1: Turing Award winner Ivan Sutherland’s caricature generated by our system. (a) is the input frontal face image. (b) is the un-
exaggerated line-drawing. (c) is the caricature generated by our system. (d) is a shaded caricature based on our system’s result.

Abstract

In this paper we present a system to automatically create a carica-
ture drawing from a frontal face photograph. The system learns how
to exaggerate features based on training examples from a particular
caricaturist.

The input to the system is a frontal face image along with its vec-
tor based line-drawing. The system creates a face shape model of
the given face with a minimum of user interaction. The face shape
is then converted to a set of semantic face features. A Kernel Re-
gression (KR) algorithm determines how much each feature should
be exaggerated based on the knowledge learned from a particular
artist. The exaggerated features are then projected into an exag-
gerated face shape using a maximum likelihood estimation (MLE)
algorithm. This MLE algorithm also maintains face constraints to
generate reasonable caricatures. Finally, the exaggerated face shape
together with the unexaggerated face shape are used to morph the
input line-drawing to create a caricature. A user interface is pro-
vided to indicate the extent of overall exaggeration. We have trained
the system with two separate artists and show results of passing sev-
eral photographs and line drawings through the system.

1 Introduction

Car • i • ca • ture: A representation, especially pictorial or liter-
ary, in which the subject’s distinctive features or peculiarities are
deliberately exaggerated to produce a comic or grotesque effect.[1]

Caricature can also be defined as “an exaggerated likeness of a
person made by emphasizing all of the features that make the per-

son different from everyone else.”[14] An experienced caricaturist
is trained to spot the most distinguishing features of a particular
person and exaggerate them in such a way that the caricature will
look much more interesting than a simple likeness. This skill needs
to be developed through years of experiences and is very difficult
to master quickly. Our goal is to create a caricature system to allow
non-artists to create caricatures easily with minimum interaction.
We take a learning approach by providing the system a set of train-
ing examples from a particular caricaturist. The system learns the
mapping from an input face to a caricature of that person. It then
automatically generates a caricature with an input of any new face.

Drawing caricatures is a highly artistic process. A single cari-
cature cannot be objectively judged as correct or wrong. Different
artists develop different styles for caricatures. We thus aim to au-
tomatically generate results from a training database created by an
artist so that the caricatures all share the same style, but without
judging whether this particular style is the best. Since our system
learns the style from database of examples, changing the style in-
volves retraining the system from a new set of examples from a
different artist. We will show results from two artists’ styles.

It should be noted that when artists draw caricatures from a live
model, they are trained to observe the subject from all views and
then find the best way to exaggerate the most distinctive features of
the face. In our case, the system is designed to aid users to create
caricatures from a single frontal face drawing or photograph. It is
very easy to capture a picture of the face with a digital camera for
input. We thus confine our problem to the 2D space of frontal faces
realizing this may limit the quality of our system’s results. We will
show that most facial features when measured from a 2D frontal

face image provide enough information to create a successful car-
icature. These features include the width of the face, size of the
nose, eyes, and so on.

There are many techniques used by a caricaturist. Changing the
geometric shape and positioning of facial parts is one of the most
common and useful techniques. Other techniques include using the
strokes to emphasize important parts of the face or simplify other
parts of the face. In this paper we focus only on techniques that
exaggerate the size and positioning of facial features.

Our goal is to build a system which can generate caricatures of
2D frontal face images by exaggerating the geometric face shape
based on caricature examples provided by an artist. We wish to do
this with a minimum of required user interaction while still giving
users some overall control of the output. To achieve this goal, we
solve the following problems:

• How much should each feature be exaggerated or under-
stated? (We will use the term exaggerate generically even if
the modification of a feature to diminish its size.) We define
a set of semantic features and learn what features should be
exaggerated and the magnitudes of exaggeration from a train-
ing data set. We assume that there exists a nonlinear map-
ping between corresponding unexaggerated and exaggerated
features. The complex nonlinear mapping is learned through
kernel regression. The kernels re-weigh the training data be-
fore doing a linear regression.

• How can we encourage reasonable constraints on the face
shape while exaggerating? After exaggerating the face fea-
tures, we must still create images recognizable as faces. For
instance, the eyes should always be located above the mouth,
the mouth cannot be wider than the face. Rather than enforc-
ing explicit constraints such as these, we achieve our goal by
constructing a lower-dimensional subspace of all the example
caricatures. The face with the newly determined exaggerated
features is then projected onto this space. The result is then
pulled towards the set of artist drawn caricatures in this space
through an optimization process. The intuition is that since
the hand drawn caricatures are all valid, then the sub-space
spanned by them will also contain only valid face shapes.

An important observation which has been largely ignored by pre-
vious systems is that the exaggeration of any feature cannot be done
out of context, but has to be done in relation to its adjacent features.
For example, a face may have a nose of normal size, but very small
mouth and eyes. A caricaturist may decide in this case to make the
nose larger since itsrelative size is large compared to the nearby
features. The difference between a feature and its own mean is
called a first order relationship, while the difference between the
relative size of one feature with other features and its mean is the
second order relationship. These two relationships are described in
[14] as a basis for performing caricature exaggerations. We show
that the generality of the kernel regression is able to fully exploit
both the first and the second order relationships when exaggerating
a face.

1.1 Related work
Recently, a number of non-photorealistic rendering algorithms
have been proposed to automatically “draw” sketches [5], en-
gravings [13], oil paintings [10], and line-drawings with different
styles [8; 11]. These systems focus on the painting style or stroke
style of the image but not on the higher level aspects of the draw-
ings such as the relationship among facial features as in facial car-
icatures. Some tools have been built to aid users to create carica-
tures [9; 2], but they do not instruct the users how to exaggerate.
While experienced caricaturists may be able to generate interest-
ing caricatures with these tools, the level of automation does not
provide ordinary users with sufficient guidance.

Some automatic caricature generators have been constructed.
The most common idea is to find the difference of a particular face
to anaverageface and then enlarge this difference. This approach
has been employed in [4; 15; 11]. These systems provide some
information about how to exaggerate and the magnitude of the ex-
aggeration can be easily adjusted. But they only consider the first
order relationship and when users adjust the magnitude of exag-
geration, these systems have no guarantee that the constraints of
human facial integrity will be kept. Sometimes, if the distance be-
tween two eyes has been enlarged too much, the eyes may extend
beyond the face contour. In [6], a set of pre-designed exaggeration
templates are used to generate caricatures. In this way facial con-
straints are maintained but users are left with only a limited choice
of templates to be used for exaggeration and the magnitude of ex-
aggeration is fixed.

In [12], a caricature training database is used and some exagger-
ation prototypes are learned from the database using PCA. When a
new face image is presented to the system, a particular prototype is
chosen automatically and the magnitude of the exaggeration is dis-
covered through linear regression. Two obvious drawbacks of this
system are that there is no user interaction function and no face con-
straints have been enforced. These two drawbacks are intricately
tied to the algorithm so it cannot be easily fixed in their system.

2 System Framework
Figure 2 outlines the framework of our caricature system. A face
is represented in three different ways as it passes through the layers
of the system.

The topmost layer is theImage Layerin which the face is rep-
resented as an image. The input can be a photograph or a vector
based line-drawing of a face drawn with Adobe Illustrator. The
output is a caricature image generated by the system. In the second
Shape Layer, the face is represented by its shape. More specifi-
cally, we define aface shape modelwith 92 key points as shown in
Figure 3. Given a frontal face image, the face shape can be semi-
automatically located with our tool [7]. The shape representation
of the face is then projected onto theFeature Layerwhere a set of
high level semantic features of the face are determined based on the
shape model. Then we use aKernel Regression(KR) algorithm to
map unexaggerated face features to exaggerated face features with
the help of our training data. After we compute the exaggerated
face features, aMaximum Likelihood Estimation(MLE) algorithm
is used to find an exaggerated face shape which best fits the exag-
gerated features while maintaining human face constraints.

In the synthesis stage, we use exaggerated and unexaggerated
face shapes to morph the vector based line-drawing and generate the
output caricature. The exaggerated and unexaggerated face shapes
serve as source and destination morphing features in this process.

After our system has automatically generated a caricature, the
user can adjust the result both globally (changing the overall ex-
aggeration magnitude) and locally (adjusting the size of individual
semantic facial feature) with the user interface of our system. This
gives our system maximum flexibility to help both untrained users
to generate more customized caricatures and aid experienced users
to generate more creative caricatures.

Our system has the following three components:

1. The definition of the semantic facial features.

2. The KR algorithm to map unexaggerated features to ex-
aggerated features exploiting the information from training
database.

3. The MLE to compute a face shape to best fit exaggerated fea-
tures and enforce human face constraints.

We will discuss these in the following Sections 3, 4 and 5.

Maximum

Likelihood

Estimation

Image Line drawing

Unexaggerated

Features

Exaggerated

Features

Kernel-

Regression

Unexaggerated

face shape

Exaggerated

face shape

Image Layer

Shape Layer

Feature Layer

Caricature

Exaggerated

Feature: f

Training Data

(exaggerated faces)

Exaggerated

Face Shape

Subspace

Face Shape S

PCA P(f|S)

P(S)

(a) System Framework (b) MLE

P(S|f)=P(f|S)P(S)

Figure 2: System Framework Diagram. (a) is the 3-layer system framework. A given face image is first converted to face shape, and then the
features. The exaggeration is done in feature layer with a Kernel Regression algorithm. And from exaggerated feature to exaggerated face
shape, we use a MLE algorithm which is shown in (b). The MLE algorithm balances both the face constrains enforced by the exaggerated
face subspace and the similarity to the given exaggerated face features.

a

b

Figure 3: Face shape and definition of semantic features. The Face
Shape has 92 key points. And the semantic face features are defined
as the distance between two key points along Y direction (a) or
along X direction (b).

2.1 Training Data
Our training data consists of 210 facial images. We asked two artists
to draw a caricature for each face. Figure 4 shows four sample faces
in our training data set. We can notice the different styles of the
two artists. Because the learned exaggeration style of our system is
consistent with the style in the training database. By creating two
databases, we enable users of our system to exaggerate a face in
two styles. Then we manually labelled face shapes for each face
image and caricature. Finally all unexaggerated face shapes and
exaggerated face shapes were resized, translated and rotated to be
aligned to a generic face shape.

3 Face Features
We use a set of semantic face features in our system. Both the
KR algorithm and user interaction operate on these features. These
semantic features are computed from the face shape model.

3.1 Face Shape Model
In our system, we use a face shape model which has 92 key points
as shown in Figure 3: points 0-7 are for the left eye, points 8-15
are for the right eye, points 16-25 are for the left brow, points 26-35
are for the right brow, points 36-47 are for the nose, points 48-67
are for the mouth, points 68-85 are for the face contour, and points

87-91 are for the forehead. This face shape model can be located
semi-automatically [7] with minimum human interaction (usually
3-4 clicks and drags). Sometimes, the 5 key points on forehead
need to be manually labelled due to the high variance of hair styles.
This face shape is then scaled, translated and rotated to align with a
generic face shape.

3.2 Semantic Face Features
The 92 key points of the face shape model provide the information
to create a set of higher level semantic features for the feature layer
representation. These features indicate various measurements of the
face, for example, “width of left eye”, “distance between the eyes”,
“height of the nose”, “width of the mouth”, “height of the mouth”,
“thickness of upper lip”, etc. Later our KR learning algorithm runs
on these features.

More specifically, these measurements are made as either the
horizontal or vertical distance between a specific pair of the 92
points, in other words between either theX coordinates or theY
coordinates of two points.

If we pack the 92 face shape points into a face shape vector:

S= (x1,y1,x2,y2, ...,x92,y92)

then a specific feature can also be represented as a vector,f , with
all zero elements except one1 and one−1. For example if a fea-
ture is the difference between the X coordinates of key point 1 and
key point 2,x1− x2, then the feature vector for this feature can be
written as: f = (1,0,−1,0, ...,0). The inner product ofSand f is
the value of the feature for the face shape:S f = x1− x2 = a. For
each feature, there is a corresponding feature vector. Putting alln
features together creates afeature matrixF = (f T

1 , f T
2 , ..., f T

n). The
features of a given face shape are then given by

fs = SF

where fs is a 1 byn vector where each element is the value of a
feature. An important property of the feature matrix is that if there
are no redundant features,F has a pseudo-inverse. This becomes
important in the later stage for finding a face shape to best fit a given
feature vectorfs.

Figure 4: Examples of training data. First row are the original pic-
tures. Second and third rows are caricatures drawn by two artists.

3.3 Discussion of Face Features

Why do we need to define semantic features? The first reason is that
when artists draw a caricature, they pay attention to semantic facial
features and the first and second order relationships mentioned in
Section 1 relate to these semantic facial features. The results that
we show are automatically generated. However, we also want to
allow users of the system to easily modify these automatically gen-
erated results. Instead of forcing users to interact with our system
in a space which is unfamiliar with them but easy to understand for
machines (e.g., eigen vectors found by PCA of the face shape space
[6]), users interact in a language which they can easily understand
(i.e., semantic facial features in our system).

The feature definition of our system comes from two sources.
First is the prior knowledge from discussions with artists. We in-
clude features to which they pay attention when exaggerating a face.
The second source is from our experiments. As we will see later,
these features serve as constraints for computing an exaggerated
face shape. So we need a feature set that can exert enough con-
straints to ensure good caricature results. This was done in an in-
teractive and iterative way: First we generate some caricatures for
faces in the training database and compare them with the carica-
tures done by the artist. We try to find the most salient and con-
sistent difference between these two sets of caricatures. If we find
one, it usually means we should add a new feature here to provide
extra constraints so our results can capture the exaggeration details
in the training data. We repeat this process until we can consistently
generate satisfying results.

An example is the “angle of mouth” feature. It is defined as the
vertical distance of the two face shape key points on the left and
right corners of mouth. Initially, this feature was not singled out as
one of our semantic facial features. It appears that the two corners
of a mouth on an ordinary face should always have the same height.
However, we found out from our experiments that one of the two
corners of a mouth can be much lower than the other in some faces
and the artist invariably exaggerates this characteristic when it is
present. Unfortunately, this error-finding process would be difficult
to automate. For example, artists pay more attention to tiny changes
of the eyes while the same amount of change for the width of the
face may be thought of as trivial. For machines, it is very difficult
to detect this difference. In our experiments, we compiled a feature
set of 47 semantic features to ensure satisfying results.

Adding a new feature to our system is very easy. One simply
adds a column in the feature matrixF .

4 Kernel Regression on Feature Space
Our goal is to learn from the training data a function,g, that maps
an unexaggerated feature vectorfin to an exaggerated feature vector
fout: fout = g(fin, training data). We use Kernel Regression (KR)
to learng(). KR is an extension of linear regression that includes
non-linearities into the learning process.

4.1 Linear Regression
Linear Regression assumes that there is a linear relationship be-
tween inputfin and outputfout, and determines linear coefficients
A from the training data. Suppose we haven training pairs,n >
47, i = 1, ...,n, j = 1, ...47,

E =




e1,1 . . . e1,47
e2,1 . . . e2,47

...
. ..

...
en,1 . . . en,47


 ,U =




u1,1 . . . u1,47
u2,1 . . . u2,47

...
. ..

...
un,1 . . . un,47




and we have:
E = UA (1)

where eachei, j is the jth exaggerated feature in theith training
data pair, andui, j is the jth unexaggerated feature inith training
data. The coefficient matrixA47×47 solved by Maximum Likeli-
hood algorithm is given by:

A = (UTU)−1(UTE)

4.2 Kernel Regression
Kernel regression captures non-linearity by allowing each input fea-
ture vector,fin, to independently re-weigh the training data before
running a linear regression. A kernel function, typically a radial ba-
sis function [3] centered at the input vector re-weighs the training
data. When an input unexaggerated feature vectorfin is given, the
kernel function,W(‖ fin− ftrain‖), gives those training data points,
which are closer tofin in the feature space more weight and those
further away fromfin less weight. Then conventional linear regres-
sion is applied to the re-weighted training data.

LetW be a diagonal re-weighting matrix calculated by the kernel
function, then Equation (1) becomes:

WE= WUA (2)

The maximum likelihood solution ofA is given by:

A = (UTWTWU)−1(UTWTWE)

Therefore, given an input feature vectorfin, the output featurefout
is computed withg() : fout = finA.

4.3 The Kernel Function
We use a kernel function with the form:

wi = e
1

(‖ fin− fi ‖+a)b

where fin is the input data andfi the ith data point in the training
database, anda andb are constants.‖ fin− fi‖ is the distance be-
tween two data pointsfin and fi . The definition of this distance
function is important to kernel regression because it determines the
weights given to each of the training data. The Mahalanobis dis-
tance is commonly used in high dimensional space to measure dis-
tance. Training data points with larger distances to the inputfin will
get lower weights, and vice versa.

One observation is that each output feature may be highly cor-
related to only a few input dimensions. A simple distance in the

feature space, can thus cause unrelated input dimensions to have
undue influence. To avoid this, we first determine an overall cor-
relation between the output feature dimension and the input feature
dimensions. A modified Mahalanobis distance betweenfin and fi
is then found by re-weighing each dimension by its correlation co-
efficient to the output dimension.

Note that for each output feature, a particular input dimension
will now have 47 different correlation coefficients, thus the weight
matrix W changes for each output feature. Therefore instead of
learning a uniqueA, we learn 47A j , leading to a1× 47 vector.
Equation (2) becomes:

Wj




e1, j
e2, j

...
en, j


 = Wj




u1,1 . . . u1,47
u2,1 . . . u2,47

...
.. .

...
un,1 . . . un,47


A j (3)

This is the formula for thejth output feature. The solution is
given by

A j = (UTWT
j WjU)−1(UTWT

j WjE j)

To ensure a stable solution for theA j ’s, instead of running the
KR directly on the original 47 input features, we first use a PCA to
find a set of linearly independent bases for the features. We then
run the KR on this reduced basis set.

Since our goal is to reduce the linear dependency among differ-
ent features during the kernel regression rather than compression,
we do not permanently discard bases with small Eigen values. We
convert the results back into the original feature basis since these
have semantic value. This provides a meaningful final user interac-
tion discussed later.

4.4 Discussion of Kernel Regression
The parametersa andb in our kernel function are determined by
cross-validation. A sequence of values fora andb are evaluated by
testing 10 percent of the training data as test input with a training
set consisting of the remaining 90 percent of the training data.a and
b are selected as the ones that best return the original caricatures of
the 10 percent used for the test.

As we can see from Equation (3), the output of one feature is not
a function of itself only, but a function of all input features. This
means that even if two faces have exactly the same value for thejth

feature, the difference of other features will still cause the system
to exaggerate thejth feature in these two faces differently.

The framework of our system thus naturally includes second or-
der relationships in a straightforward way. If we only consider the
first order relationship, Equation (3) would look like

Wj




e1, j
e2, j

...
en, j


 = Wj




u1, j
u2, j

...
un, j


A j (4)

5 Finding the Best Face Shape
Once we have obtained the exaggerated features, we need to find an
exaggerated face shape that best fits the features without violating
the basic constraints of a face. The inverse problem was described
earlier; given a face shapeS, the face features can be computed by
multiplying by the feature matrixF : f = SF. The fit of a shape
to a set of features is then defined by the difference,‖SF− f‖, a
measure of the distance between face shapeS’s features and the
feature vectorf . We maintain basic face constraints by finding a
shape that balances lying within the subspace of shapes spanned
by the artist’s caricatures and having a best fit to the exaggerated
features determined by the kernel regression.

5.1 Exaggerated Face Shape Subspace and Prior
We first construct a generative model of theexaggerated face shape
subspace. From all theexaggeratedface shapes in our training data,
we use principal component analysis (PCA) to find a set of basis
vectors that span the exaggerated face shape subspace. Then any
exaggerated face shapeS can be written as the linear combination
of these basis vectors:

S= XB+ µ

B = [b1,b2, ...,bk]T , X = [x1,x2, ...,xk]

where thebi ’s are firstk Eigenvectors (92 by 1) from the PCA andxi
are the corresponding coefficients forS. X is the projection ofS in
the space spanned by thek Eigenvectors.µ is the mean exaggerated
face shape. Here we takek = 35 which covers 96.3% energy of all
the Eigen values. In our experiments we have found largerk′s do
not generate saliently visually better results.

We assume that the probability distribution of exaggerated face
shapes is a Gaussian. The probability of any given face shapeS
projected to the subspace,X, becomes:

p(S) = p(X) =
1
D

exp(−XΛ−1XT) (5)

whereD is a normalization constant, andΛ the covariance matrix
where the diagonal matrix isΛ = diag(σ1,σ2, ...,σk). σi is the vari-
ance ofith dimension of the subspace.

5.2 Likelihood and MLE
Given a feature vectorf , the likelihood of a face shapeS can be
defined as follows:

p(S| f) = p(f | S)p(S) =
1
D′

exp(−‖SF− f‖2

λ
)p(S) (6)

‖SF− f‖ is the distance between the feature of the face shapeS
and the given feature vectorf . F is the feature matrix.λ andD′ are
constants.p(S) can be replaced by Equation (5).

So the problem now becomes: given an exaggerated feature vec-
tor f , we want to find anS from the exaggerated face shape sub-
space to maximize the likelihood in Equation (6).

First we replaceS in Equation (6) withXB+ µ:

p(S| f) =
1
D′

exp(−‖(XB+ µ)F− f‖2

λ
)p(S)

Then we insert equation (5) into it:

p(S| f) =
1

D′D
exp(

−‖(XB+ µ)F− f‖2−λXΛ−1XT

λ
)

TheX that maximizes the likelihood is:

Xmax= argmin(‖(XB+ µ)F− f‖2 +λXΛ−1XT) (7)

And we have:

Xmax= (f −µF)FTBT(BFFTBT +λΛ−1)−1 (8)

Recall that the feature matrixF is pseudo-invertible (Section 3).
BecauseB contains only the basis vectors of the subspace,B is also
pseudo-invertible.Λ is a diagonal matrix with all positive diagonal
elements (since they are the variance of the database) so it is in-
vertible. Therefore in Equation (8),Xmax can always be computed
reliably in close form.

Equation 7 formalizes the objective to find anX that minimizes
a weighted sum of two terms. The first term‖(XB+ µ)F − f‖2 is
the distance between the face feature vector of face shapeSand the
given feature vectorf , the second termλXΛ−1XT is the distance

(1-a) (1-b) (2-a) (2-b)

Figure 5: Some Test Results of Finding the Best Face Shape. (1-a)
and (2-a) are ground truth, (1-b) and (2-b) are face shapes computed
by our system.

(a)

(b)

(c)

Figure 6: Constraints are automatically held in our system as shown
in (c), but not for simple exaggerators as shown in (a) and (b). For
each row, from left to right, the magnitude of exaggeration is larger
and larger.

from Sto the mean face shapeµ in the exaggerated face shape sub-
space weighted by a constantλ . An optimalX thus adheres to the
features predicted by the kernel regression, but provides assurance
that the exaggerated face shape will not stray too far from the mean
shape. Although the second term provides only a soft constraint
on the final caricature, we have found that it invariably produces
reasonable results.

5.3 Why MLE?
Figure 5 shows two face shapes created using our system to best
fit the given features. Figure 5 (1-a) is the exaggerated face shape
in our training database, while Figure 5 (1-b) shows the best fitted
shape from the subspace. Another example is given in Figure 5 (2-
a) and (2-b). Note that the fitted face shapes are nearly the same as
the ground truth. As a test, we compare two simple exaggerators
with our algorithm:

1. The first simple exaggerator computes the difference of key
point positions of a given face and those of the mean face
shape. The difference is then exaggerated (i.e., multiplied) by
a factork and added back to the mean shape.

2. The second simple exaggerator first computes the eigenvec-
tors of face shapes in the training database, and projects each
face shape onto the space spanned by these vectors. Then, as
in our first method, the exaggerator finds the difference be-
tween a projected face shape and the projection of the mean

a b c

d
e

f

Figure 7: User interface. (a) The unexaggerated face, (b) exagger-
ated face shape generated by system, (c) caricature generated by
system, (d) semantic feature lists and (e) visualization of the se-
lected feature sizes (f) slider bar that can be used to adjust each
feature’s size or the overall exaggeration magnitude.

(a) (b) (c) (d) (e) (f)

Figure 8: Some Leave-one-out test result. (a) is the input face. (b)
is the ground truth. (c) is our result. (d) and (e) are results of the
two simple exaggerators. (f) are the results that involve only the
first order relationship.

face shape. The differences are scaled byk and added back to
the mean and finally re-projected back to the original space.

3. In contrast, our algorithm first computes an exaggerated face
feature vector. Then, the difference from this exaggerated face
feature vector to the unexaggerated face feature vector is cal-
culated. We multiply the difference byk and add this to the
original feature vector. Finally the MLE method is used to
determine the exaggerated face shape.

A comparison of the results obtained by these two simple exag-
gerators and our algorithm is shown in Figure 6, withk being 0.0,
0.5, 1.0, 1.5 and 2.0 from left to right. We can see from our result
in Figure 6 that our algorithm successfully maintains the constraints
of a human face while the simple exaggerators fail to do so.

6 User Interaction

All the results shown in the paper were generated automatically,
modifying only the overall exaggeration in some figures as indi-
cated. In other words, individual features were not modified by
hand. That said, the use of semantic features provides the basis for

(a) (b) (c) (d) (e)
Figure 9: From left to right: an input image, a line drawing, an exaggerated caricature generated by our system, the caricature with a different
stroke style applied by the user, and with shading added by the user.

(a) (b) (c) (d) (e) (f) (g)

Figure 10: Caricature with different exaggeration magnitude. For the input image shown in (a), our system generated the caricatures with less
exaggerating magnitude as in (a) to more exaggerating as in (g).

an intuitive user interface to provide more detailed control to the
user if desired.

In the UI shown in Figure 7, users can directly adjust each fea-
ture’s size individually as well as the overall exaggeration magni-
tude with “feature list” control and slider bar control. Since every
feature in our system has semantic meaning, it is very easy for users
to achieve a desired effect. For example, if they want to make the
nose bigger, they can just increase the size of “width of the bottom
of the nose” and “height of the nose”. Our system then will auto-
matically generate a new exaggerated face shape for the adjusted
features through the MLE projection. The individual feature mod-
ifications can be seen in real time, and when the users are satisfied
with the edited features, they can select “generate caricature” in the
drop-down list under the caricature window to generate the final
caricature.

7 Results

To test our learning algorithm, we have run some leave-one-out
tests. First we exclude a randomly selected face from the train-
ing data and use the remaining faces as the new training data. Then
we compute the exaggerated face shape for the excluded face and
compare the result with the ground truth. We compare our results
with the two simple exaggerators mentioned in Section 5.3. We
generated results with the same algorithm but only using the first
order relationship as mentioned in Section 4.4. Figure 8 shows the
leave-one-out results. Figure 8 (a) are the original unexaggerated
face shapes, (b) are the ground truth, (c) are our results, (d) and (e)
are results of the two simple exaggerators mentioned above and (f)
are the results that only involve the first order relationship. Our sys-
tem creates a better match to the artist’s face shape than the shapes
created by the two simple exaggerators. Compared to the one using
only first order relationships, our system retains more subtle details
of exaggeration.

Figure 9 shows the resulting caricature generated by our system.
Next to the original image (a), the unexaggerated line drawing (b) is
automatically generated by the sketch generation system [5]. This

unexaggerated line drawing is then exaggerated by our system to
generate the caricature (c). With the caricature result, users can
change the stroke styles and shade it as shown in (d) and (e).

Our system can generate a range of plausible caricatures for a
single person. In Figure 10, the caricatures of a single person with
different exaggeration magnitudes are shown. (a) is the input face
image (b) is the unexaggerated input line-drawing image. (d) is the
result generated by our system. (c) and (e) are results with less and
more exaggeration adjusted by the UI of our system.

Because our system has two training databases created by two
different artists, it can generate caricatures of two different styles.
We show the results of two different styles in Figure 11. Users can
use photoshop or other painting software to shade the caricature re-
sults to generate colored caricatures. Please note that all the results
here shown in Figure 11 are automatically generated, no human in-
teraction has been involved.

Two caricatures shown in the first row (columns c and d) of Fig-
ure 11 exemplify that our system learns distinctive features from
different training databases. For the first style (in column c), the
most important features include the height of nose, the height of
forehead, and the width of face (across lower chin). For the second
style (in column d), our system has found that the width of face
(across mouth), the width of face (across lower chin) and thickness
of lower lip are among the most important features. A close in-
spection of the original photo convinces us that all these features
are good and reasonable. But it is up to individual artists to define
their own styles by choosing what features to exaggerate. What our
system does is to learn a particular style of caricaturing from the
training data.

8 Conclusion

As we have seen, our example based caricature system can automat-
ically generate caricatures from a training database with the same
exaggeration style as the training database. With two sets of train-
ing data, we can thus automatically generate caricatures with two
different styles.

The kernel regression operating on a set of semantic features
naturally includes second order relationships. KR learns the com-
plex non-linear mapping from unexaggerated features to exagger-
ated features. We have shown that reasonable face constraints are
maintained through projection using a maximum likelihood estima-
tion.

Our system only focuses on the exaggeration of the 2D geomet-
ric shape of frontal faces. No texture or 3D information is included.
The feature definition was created by hand through a combination
of prior knowledge and the experiments with our training database.
In a new database, the current selected 47 features may not be
enough. But our feature definition is easily extended. A simple user
interface has also been discussed to allow users to modify results to
achieve specific results.

In the future, we hope to extend our system to a 3D analysis
of human faces to generate caricatures of a full 3D model. We
also want to add the face texture to the analysis so the system can
exaggerate not only the geometric shape of the face but also the
subtle shading of the face.

References
[1] American heritage dictionary of the english language, fourth edition. Technical

report. As reported onwww.dictionary.com.
[2] E. Akleman, J. Palmer, and R. Logan. Making extreme caricatures with a new

interactive 2d deformation technique with simplicial complexes. InProceedings
of Visual 2001, 2000.

[3] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun. Image warping by radial basis
functions: Applications to facial expressions.Computer Vision, Graphics, and
Image Processing, 56(2):161–172, March 1994.

[4] S. E. Brennan. Caricature generator: The dynamic exaggeration of faces by
computer.Leonardo, 18(3):170–178, 1985.

[5] H. Chen, Y. Q. Xu, H. Y. Shum, S. C. Zhu, and N. N. Zheng. Example-based
facial sketch generation with non-parametric sampling. InICCV 2001, 2001.

[6] H. Chen, N. N. Zheng, L. Liang, Y. Li, Y. Q. Xu, and H. Y. Shum. Pictoon: A
personalized image-based cartoon system. InACM Multimedia 2002, 2002.

[7] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance model. In
Proceedings of the 5th European Conference on Computer Vision, 1998.

[8] W. T. Freeman, J. B. Tenenbaum, and E. Pasztor. An example-based approach
to style translation for line drawings. Technical Report TR99-11, 1999.

[9] B. Gooch, E. Reinhard, and A. Gooch. Perception-driven black-and-white
drawings and caricatures. Technical Report UUCS-02-002, 2002.

[10] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin. Image
analogies. InProceedings of SIGGRAPH 2001, Computer Graphics Proceed-
ings, Annual Conference Series. ACM, ACM Press / ACM SIGGRAPH, 2001.

[11] H. Koshimizu et al. On kansei facial processing for computerized facial carica-
turing system picasso. InIEEE International Conference on Systems, Man, and
Cybernetics, volume 6, 1999.

[12] L. Liang, H. Chen, Y. Q. Xu, and H. Y. Shum. Example-based caricature gen-
eration with exaggeration. InIEEE Pacific Graphics 2002, 2002.

[13] V. Ostromoukhov. Digital facial engraving. InProceedings of SIGGRAPH
1999, 1999.

[14] L. Redman.How To Draw Caricature. Contemporary Books, 1984.
[15] T. Valentine. A unified account of the effects of distinctiveness, inversion and

race in face recognition.The Quarterly Journal of Experimental Psychology.

(a) (b) (c) (d) (e) (f)
Figure 11: Caricatures with two styles. (a) are input face images, (b) are line-drawings, (c) are caricatures of the first style, (d) are caricatures
of the second style, (e) are shaded caricatures of the first style and (f) are shaded caricatures of the second style.

