章节大纲

  • You work at a movie theater. For a movie blockbuster, the theater makes $11,850. If adult tickets cost $11 and child tickets cost $6.50, how many child's tickets were sold if they sold 900 adult tickets? In this section, we consider two other forms of the equation of a line to model situations like this one. 

    lesson content

    Point-Slope Form of the Equation of a Line
    ::线线的平方

    In the previous section, we discussed how to find equations of lines in slope-intercept form . However, sometimes you do not know the y- intercept . There is another form of a line that eliminates the need to know or to find the y- intercept. This is point- form. 
    ::在前一节中,我们讨论了如何在斜坡界面中找到线的方程式。 但是, 有时您不知道 y 界面。 有另一种形式的线条可以消除知道或找到 y 界面的需要。 这是点形式 。

    As the name implies, point-slope form requires the slope and a point on the line. The equation is essentially a rearrangement of the slope formula . If we take the slope formula and multiply both sides by  x 2 x 1 , we get
    ::正如名称所暗示的,点斜体形式需要斜度和线上的一个点。方程基本上是斜度公式的重新排列。如果我们采用斜度公式,将两边乘以 x2 - x1,我们得到

    m = y 2 y 1 x 2 x 1 ( x 2 x 1 ) m = y 2 y 1 x 2 x 1 ( x 2 x 1 ) m ( x 2 x 1 ) = y 2 y 1

    ::my2-y1x2- x1 (x2- x1)\\ m=y2-y1x2- x1)\ x1}(x2- x1)\\ m(x2- x1)=y2-y1

    For a fixed m,  there are an infinite number of points that satisfy this equation if we know one of the points ( x 1 , y 1 ) . To represent this, we replace ( x 2 , y 2 )  with variables  ( x , y ) .
    ::对于一个固定米,如果我们知道一个点(x1,y1),有无限数量的点可以满足这个方程。 要代表这个点,我们用变量(x,y)取代(x2,y2),以变量(x,y)取代(x,y)。

       Point-Slope Form of the Equation of a Line
    ::线线的平方

    The point-slope form of a line is 
    ::线条的点斜体形式是

    y y 1 = m ( x x 1 )

    ::yy1=m(x-x1)

    where  m  is the slope of the line and  ( x 1 , y 1 )  is a point on the line. 
    ::m 是线的斜坡, (x1,y1) 是线上的一个点 。

    Example 1
    ::例1

    Find the equation of a line whose slope is 4 and goes through the point (1,3).
    ::查找斜度为 4 并经过点(1,3) 的线的方程。

    Solution:  Here we are given the slope and a point on the line, so we use point-slope form. We identify the values for  m ,   x 1  and y 1  and  substitute into the equation.
    ::解答: 这里我们给定了斜坡和线上的一个点, 所以我们使用点窗体。 我们确定 m、 x1 和 y1 的值, 并替换为等式 。

    m = 4 x 1 = 1 y 1 = 3 y 3 = 4 ( x 1 )
    That is the equation of the line with the given properties.   
    ::m= 4x1= 1y1= 3y- 3= 4(x- 1) 这是与给定属性对应的直线方程式 。

    Example 2
    ::例2

    Find the equation of a line whose slope is  1 2  and goes through the point (-5,6). 
    ::查找斜坡为12且经过点( 5, 6) 的线的方程。

    Solution: Again, we know the slope and a point on the line, so we use point-slope form. Identifying the missing values and substituting into the equation, we have
    ::解决方案:再次,我们知道斜坡和线上的一个点, 所以我们使用点- 斜坡形式。 识别缺失的值, 并替换到方程中, 我们找到了

    m = 1 2 x 1 = 5 y 1 = 6 y y 1 = m ( x x 1 ) y 6 = 1 2 ( x ( 5 ) ) y 6 = 1 2 ( x + 5 )

    ::m=12x15y1=6y-y1=m(x-x1)-6=12(x-(5))y-6=12(x+5)

    Subtracting -5 is the same as addition by 5: keep the sign of the x , change the operation to addition, and change the sign of the second number from negative to positive. 
    ::减法 - 5与增加5:保持x的标记,将操作改为增加,将第二个数字的标记从负数改为正数。

    Example 3
    ::例3

    Find the equation of the line that has a slope of -9 and goes through (-7,0).  
    ::查找线的方程,线的斜度为 -9,然后通过(-7,0)。

    Solution: Be careful here. The point we have is not the y- intercept. For the y- intercept, the x- value is 0. This is the x- intercept. Using point-slope form, we have
    ::解答: 注意这里。 我们的点不是 y 界面。 对于 y 界面, x 值为 0。 这是 x 界面。 使用 point- slope 格式, 我们已经有了

    m = 9 x 1 = 7 y 1 = 0 y y 1 = m ( x x 1 ) y 0 = 9 ( x ( 7 ) ) y = 9 ( x + 7 )

    ::=%9x17y1=0y-y1=m(x-x1)-0_9(x-(-7))y_9(x+7)

    If we distribute the -9 to each one of the terms , we have the equation of this line in slope-intercept form: y = 9 x 63 .  
    ::如果我们将 -9 分配到每个术语中, 我们就会在斜坡截取形式上使用此线的方程式 : y9x- 63 。

    Example 4
    ::例4

    Find the equation of the line that contains the points (-1,3) and (2,-6).
    ::查找包含点数(-1,3)和点数(2,6)的线的方程。

    Solution: We can use point-slope form since we know two points on the line. First, we need to find the slope.
    ::解决方案:我们可以使用点窗体,因为我们知道线上有两个点。首先,我们需要找到斜坡。

    ( x 1 , y 1 ) = ( 1 , 3 ) ( x 2 , y 2 ) = ( 2 , 6 ) m = 6 3 2 ( 1 ) = 9 3 = 3

    :伤心x1,y1) = (-1,3) (x2,y2) = (2,-6) m) 6 - 32 - (-1) 93 3

    Now, that we know the slope, we can substitute into the point-slope equation using the ( x 1 , y 1 )  we defined above.
    ::现在,我们知道斜坡, 我们可以用上面定义的(x1,y1) 来替代点偏方程。

    y y 1 = m ( x x 1 ) y 3 = 3 ( x ( 1 ) ) y 3 = 3 ( x + 1 )
    by CK-12 demonstrates how to write the equations of lines given their slope and y -intercept or two of their points.  
    ::y-y1=m(x-x1)-33(x-(-1))-y-33(x-(-1))-y-3_3(x+1) 由 CK-12 演示如何根据线条的坡度和 y- intercept 或两点写线的方程 。

    General Form of the Equation of a Line
    ::线条等式的一般形式

    We have another way to write the equation of a line. As we will see, it is a convenient form for graphing and modeling situations.
    ::我们用另一种方式来写一个线的等式。我们可以看到,它是绘制图表和建模的方便形式。

       General Form of the Equation of a Line
    ::线条等式的一般形式

    The general form of a line is
    ::直线的一般形式是

    A x + B y = C

    ::Ax+By=C 轴+By=C

    where A , B , and C are  real numbers .
    ::其中A、B和C是真实数字。

    To get an equation in general form, you often have to start with one of the other forms and convert those to general form. We see this in the next example. 
    ::要以一般形式获得等式, 您往往必须从其它表格之一开始, 并将这些表格转换为一般形式。 我们从下一个示例中看到这一点 。

    Example 5
    ::例5

    Find the equation of a line in general form where the slope is 3 4 and passes through (4, -1).
    ::在斜坡为34且通过(4,-1)的直线中,查找以一般形式表示的直线的方程。

    Solution: To find the equation in general  form, you need to determine what A , B , and C are. Let’s start this example by finding the equation in point-slope form.
    ::解决方案 : 要找到一般形式的方程式, 您需要确定 A、 B 和 C 是什么 。 让我们先从点窗体的方程式开始 。

    y ( 1 ) = 3 4 ( x 4 ) y + 1 = 3 4 ( x 4 )

    ::y- (- 1) =34(x-4)y+1=34(x-4)

    To change this to general  form we need to get the x-  and y- terms on the same side of the equation and the numbers on the other side. 
    ::要将其变成一般形式, 我们需要将 X 和 Y 术语放在方程的同一侧, 数字放在另一侧。

    y + 1 = 3 4 ( x 4 ) y + 1 = 3 4 x 3 3 4 x + y + 1 = 3 3 4 x + y = 4 4 ( 3 4 x + y ) = 4 ( 4 ) 3 x 16 y = 16

    ::y+1=34x-33-3-34x+y+1}3-34x+y_3x_4_4(-34x+y)_4(- 34x+y)_4(- 34x+y)_4(- 4)_4(- 4)3x-16y=16

    by CK-12 demonstrates how to convert from slope-intercept form of a linear equation to the general  form.
    ::通过 CK-12 演示如何从线性方程式的斜度间距形式转换为一般形式。

    Example 6
    ::例6

    Find the equation of the line below, in general form.
    ::查找下面直线的方程式,以一般形式显示。

    lesson content

    Solution: Here, we are given the intercepts . Since we have a graph, we can find the slope using rise over run 6 2 = 3  and the y- intercept is (0, 6). The equation of the line, in slope-intercept form, is y = 3 x + 6 . To change the equation to general (standard) form, subtract the x- term to move it over to the other side.
    ::解答 : 在这里, 我们得到拦截 。 由于我们有一个图表, 我们能找到斜坡, 使用向上移动, 62=3, y 界面是 (0, 6) 。 斜坡- 界面形式的线的方程式是 y= 3x+6 。 要将方程式更改为一般( 标准) 格式, 请减去 x 期, 将其移到另一侧 。

    3 x + y = 6 1 ( 3 x + y ) = 1 ( 6 ) OR 3 x y = 6

    ::- 3x+y=6-1(-3x+y)\\\\\\\(6)OR3x-y=6

    by CK-12 demonstrates how to write linear equations in general  form given two points.
    ::用 CK-12 演示如何以给定两个点的一般形式写出线性方程式。

    Example 7
    ::例7

    You work at a movie theater. For a movie blockbuster, the theater makes $11,850. If adult tickets cost $11 and child tickets cost $6.50, how many child's tickets were sold if they sold 900 adult tickets?
    ::你在一个电影院工作。对于一个电影大块头来说,电影院赚11 850美元。如果成人票价为11美元,儿童票价为6.50美元,如果他们卖900张儿童票,他们卖了多少张儿童票?

    Solution: Let's define some variables. Say  a  is the number of adult tickets and  c  is the number of child's tickets. Then, the money made from adult tickets is 11 times the number of adults tickets, or  11 a . Similarly, the amount of money made from child's tickets is 6.5 c . The total amount of money made is
    ::解决方案:让我们来定义一些变量。 说一是成人票数, c是儿童票数。 然后, 成人票数是成人票数的11倍, 即11a。 同样, 儿童票数的6. 5c。 钱总数是6. 5c。

    11 a + 6.5 c = 11 , 850 general form
     

    ::11a+6.5c=11 850一般形式

    Since we know the number of adults that purchased tickets, we can find the number of child's tickets by substituting into the equation. 
    ::由于我们知道有多少成年人购买机票,我们可以用方程式来替代儿童机票的数量。

    11 ( 900 ) + 6.5 c = 11 , 850 9 , 900 + 6.5 c = 11 , 850 9 , 900   9 , 900 _ 6.5 c 6.5 = 1 , 950 6.5 c = 300

    ::11(900)+6.5c=11 8509 900+6.5c=11 850-9 900-9 900--9 900-6.5c=1 9506.5c=300

    There were 300 child's tickets sold.  
    ::卖了300张孩子的票

    by Mathispower4u demonstrates how to write linear equations in general form to represent applications. 
    ::由 Mathispower4u 演示如何以一般形式写成直线方程式以代表应用程序。

    Summary
    ::摘要

    • Point-slope form ( y y 1 = m ( x x 1 ) ): Identify the slope and a point on the line and then substitute for m  and  ( x 1 , y 1 ) .
      ::点窗体(y-y1=m(x-x1):标明斜坡和线上的一个点,然后取代m和(x1)y1。
    • General form ( A x + B y = C ) : Write the equation in slope-intercept or point-slope form and then use inverse operations to get x  and y  on the same side of the equation and the number on the other side   
      ::一般窗体 (Ax+By=C): 以斜度截面或点窗体形式写入方程,然后使用反向操作获得方形同侧的 x 和 y 和另一侧的数字

    Review
    ::回顾

    Find the equation of the lines  in point-slope form with the following properties.
    ::以点倾斜窗体查找线条的方程式,其属性如下。

    1. slope = 2 and passes through (3, -5)
    ::1. 斜坡=2,通过(3,5)

    2. slope = 1 2 and passes through (6, -3)
    ::2. 斜度 12 和通过(6, 3)

    3. passes through (5, -7) and (-1, 2)
    ::3. 通过(5,-7)和(1、2)

    4. passes through (-5, -5) and (5, -3)
    ::4. 通过(5-5、5-5)和(5、3)

    Find the equation of the lines in general form with the following properties.
    ::以下列属性查找直线的直线方程式的一般形式。

    5. x- intercept = (-4,0) and y- intercept = (0,6)
    ::5. x 截取 = (4,0)和y 截取 = (0,6)

    6. slope = -3 and passes through (2,6)
    ::6. 坡度=-3和通过(2,6)

    7. equation of the line is  y = 2 3 x + 4
    ::7. y23x+4是y23x+4

    8. equation of the line is  y 8 = 4 ( x 2 )
    ::8. Y-8=4(x-2)的直线等式为y-8=4(x-2)

    Convert the following equations into slope-intercept form.
    ::将以下方程式转换为斜坡界面形式。

    9.  4 x + 5 y = 20
    ::9. 4x+5y=20

    10.  y + 3 = 3 2 ( x 8 )
    ::10. y+332(x-8)

    Explore More
    ::探索更多

    1. a. Find the equation of the line in point-slope form that passes through (-1,5) and (4,0) using (-1,5) as the point on the line.
    ::1. 将线条的方程以点窗体(1、5)和(4、0)以(1、5)作为线上点。

    b. Next, find the equation of the line in point-slope form using (4,0).
    ::b. 下一步,用点窗体(4,0)找到线的方程式。

    c. Convert each line into slope-intercept form. Does the point you choose in point-slope form matter?
    ::c. 将每条线转换为斜坡界面。用点偏斜窗体选择的点是否重要?

    2. a. Change A x + B y = C into slope-intercept form. What are the slope and y- intercept equal to (in terms of A , B , and/or C )?
    ::2. a. 将Ax+By=C改为斜坡界面。斜坡和Y(A、B和/或C)等于什么?

    b. Find one possible combination of A , B , and C for y = 1 2 x 4 . Write your answer in general form.
    ::b. 为y=12x-4寻找A、B和C的可能组合。

    3. a. The population of a town gradually decreases by about 50 people a year. In 2010, the population was 8,500 people. Write an equation in general form for the population of this town .
    ::3.a. 城镇人口每年逐步减少约50人,2010年人口为8,500人,为城镇人口撰写一个通用方程式。

    b. At this rate, when will the population of the town be 0 people?
    ::b. 按此速度计算,该镇人口何时为0人?

    4. You are 300 miles from home and driving at a speed of 55 mph. If  c h a n g e   i n   d i s t a n c e = r a t e c h a n g e   i n   t i m e , write an equation in point-slope form to model your drive home. 
    ::4. 你离家300英里,驾驶速度55英里,如果时间的距离=率变化改变,用点窗形写一个方程来模拟驾驶车回家。

    5.  You invest money into two accounts. The first account earns 2% interest and the second 5% interest. If you made a total of $165 in interest and you invested $3,000 in the first account, how much did you invest in the second account?
    ::5. 你将资金投资于两个账户:第一个账户赚取2%的利息,第二个账户赚取5%的利息;如果总共赚了165美元的利息,并在第一个账户上投资了3 000美元,那么在第二个账户上投资了多少?

    by Mathispower4u is a continuation of the previous video and explains how to write a linear equation in general form to represent an application. 
    ::Mathispower4u 是前一段视频的继续, 解释如何写出一般形式的线性方程式, 以代表应用程序 。

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix.
    ::请参看附录。

    PLIX
    ::PLIX

    Try these interactives that reinforce the concepts explored in this section:
    ::尝试这些强化本节所探讨概念的交互作用 :