章节大纲

  • Suppose you are designing a house in a computer design program. You line up walls on horizontal and vertical lines in the grid. How would we describe these walls in the coordinate plane ? We discuss that in this section. 

    lesson content

    Horizontal Lines
    ::水平线

    To determine an equation for horizontal lines, let's consider an example of a table of values for points on a horizontal line. If we plot these points and draw a line through them, the line will be horizontal.
    ::要确定水平线的方程, 让我们来考虑一个水平线上的点的数值表格示例。 如果我们绘制这些点并通过它们绘制一条线, 该线将是水平的 。

    x y - 3 4 0 4 2 4

    ::xy-340424xy-340424

    Since we can find the , 0, and we are given the y- intercept (0,4), we can find the equation of the line by using slope-intercept form .
    ::既然我们能找到,0, 并且我们得到了 Y 界面( 0, 4), 我们就可以通过使用斜坡界面来找到线的方程 。

    y = m x + b y = 0 x + 4 y = 4

    ::y=mx+by=0x+4y=4 y=4 y

    Notice how this equation makes sense given the values in the table. All of y- values in the table are 4, so they satisfy this equation. 
    ::注意这个方程式在表格中值是否合理。 表格中的所有 Y 值都是 4 , 所以它们满足了这个方程式 。

       Horizontal Lines
    ::水平线

    In general, the equation of a horizontal line is 
    ::一般而言,横向线的方程式是

    y = c
    where c  is a real number
    ::y=c,C是一个真实的数字。

    Example 1
    ::例1

    Find the equation of the the line that goes through (-2,-2) and (1,-2) and graph it. 
    ::查找通过线( 2-2) 和(1, 2) 的方程式, 并绘制图表 。

    Solution:  These points share a common y- value, so the slope of the line that contains these points is 0. It is a horizontal line. Its equation is  y = 2
    ::解决方案 : 这些点有一个共同的 Y 值, 因此包含这些点的线的斜度是 0。 这是一个水平线。 它的方程是 y 2 。

    To graph it, we plot the two points and draw a horizontal line through them. 
    ::为了绘制图表,我们绘制两点,并绘制一条横线。

    lesson content

    Example 2
    ::例2

    Find the equation of the horizontal line through (-4, 1) and graph it.
    ::查找横线( 4, 1) 的方程式, 并绘制图表 。

    Solution:  This point needs to satisfy the equation, so we use its  y -value. The equation of the line is y = 1 . To graph the line, plot the point (-4, 1) and draw a horizontal line through it.
    ::解答 : 此点需要满足方程式, 所以我们使用它的 Y 值。 线的方程式是 y= 1 。 要绘制线条图, 绘制点( 4 、 1) 并通过它绘制水平线 。

    lesson content

      


    by CK-12 demonstrates how to determine if a line is vertical or horizontal given the equation of the line.
    ::通过 CK-12 演示如何根据线的方程确定一条线是垂直线还是水平线。

    Vertical Lines
    ::垂直直线

    We can approach our search for an equation for vertical lines in a similar way to horizontal lines. 
    ::我们可以以与水平线相似的方式寻找垂直线的方程式。

    To determine a general equation for vertical lines, let's consider a table of values for points on a vertical line. For example,
    ::要确定垂直线的一般方程, 我们考虑垂直线上的点的数值表。 例如,

    x y 3 - 2 3 1 3 5

    ::xy3-23135xy3-23135

    We cannot use any of the forms of the equation of a line since the slope is undefined . However, notice that all of the x- values are the same. An equation that would satisfy all of these points would be  x = 3 .
    ::由于斜坡没有定义, 我们不能使用线形方程的任何形式。 但是, 请注意所有 x 值都是相同的。 满足所有这些点的方程是 x= 3 。

      Vertical Lines
    ::垂直直线

    In general, the equation of a vertical line is 
    ::一般而言,纵向线的等式是:

    x = c
    where  c  is a real number.
    ::x=c,其中c是一个真实数字。

    Example 3
    ::例3

    Find the equation of the the line that goes through (-1,2) and (-1,5) and graph it. 
    ::查找通过线( 1, 2) 和( 1, 5) 的方程式, 并绘制图表 。

    Solution:  These points share an x- value, so the slope of the line that contains these points is undefined. It is a vertical line. Its equation is  x = 1
    ::解析度 : 这些点共享 x 值, 因此包含这些点的线条的斜度是未定义的。 它是一个垂直线。 它的方程式是 x\\\ 1 。

    To graph it, we plot the two points and draw a vertical line through them. 
    ::为了绘制图表,我们绘制两点图,并划一条垂直线通过这两点。

    lesson content

    Example 4
    ::例4

    Find the equation of the vertical line through (2,3) and graph it.
    ::查找垂直线通过(2,3)的方程式并绘制图表。

    Solution:  This point needs to satisfy the equation, so we use its x- value. The equation of the line is  x = 2
    ::解答 : 此点需要满足方程式, 所以我们使用它的 X 值。 线的方程式是 x= 2 。

    To graph the line, plot the point (2,3) and draw a vertical line through it. 
    ::要绘制线条图, 绘制点( 2, 3) 并通过它绘制一条垂直线 。

    by CK-12 is a continuation of the previous video and demonstrates how to determine if a line is vertical or horizontal given the equation of the line.
    ::CK-12是前一段视频的延续,并显示如何根据线的方程确定一条线是垂直线还是水平线。

    Example 5
    ::例5

    Find the equations of the lines that contain the line segments for the walls below.
    ::查找包含以下墙壁线段的线条方程式的方程式。

    lesson content

    Solution:  
    ::解决方案 :

    Line Segment A: The points on line segment A  share an x- value of 10. The equation of the line that contains this line segment is  x = 10 .
    ::线段A:线段A的点的X值为10。 包含此线段的线的方程式是x=10。

    Line Segment B: The points on line segment B  share a y- value of 50. The equation of the line that contains this line segment is  y = 50 .   
    ::线段B:线段B的点的Y值为50,包含该线段的线的方程式为y=50。

    Line Segment C: The points on line segment C  share an x- value of 30. The equation of the line that contains this line segment is  x = 30 .  
    ::C线段:C线段上的点数的X值为30,包含该线段的线的方程式为x=30。

      Line Segment D: The points on line segment D  share an y- value of 0. The equation of the line that contains this line segment is  y = 0 .    
    ::线段 D : 线段 D 上的点值为 0 y。 包含此线段的线的方程式是 y= 0 。

    by Randy Anderson explains the connection between the equations, graphs, and slopes of vertical and horizontal lines. 
    ::Randy Anderson解释了垂直和水平线的方程式、图表和斜坡之间的联系。

    Summary
    ::摘要

    • Horizontal lines have zero slope and their equations are of the form  y = c .
      ::水平线为零斜度,其方程式为y=c。
    • Vertical lines have undefined slope and their equations are of the form x = c  
      ::垂直线有未定义的斜坡,其方程式为表x=c。

    Review 
    ::回顾

    Find the equation of the lines with the given properties. 
    ::根据给定属性查找线条的方程。

    1. slope = 0 and passes through (-4,3)
    ::1. 斜坡=0,通过(4-3)

    2. slope is undefined and passes through (-2.-5)
    ::2. 坡度未定义,通过(-2.5)

    3. passes through (1,4) and (1,8)
    ::3. 通过(1,4)和(1,8)

    4. passes through (3,5) and (7,5)
    ::4. 通过(3,5)和(7,5)

    5. passes through (-6,12) and (-6,18)
    ::5. 通过(-6,12)和(-6,18)

    6. passes through (0,-7) and (-7,-7)
    ::6. 通过(0、7)和(7、7)

    Graph the following lines.
    ::绘制下行图。

    7.  y = 4
    ::7.y=4

    8.  x = 1
    ::8. x=1

    9.  y = 2
    ::9. y2

    10.  x = 3
    ::10. 3x%3

    Explore More
    ::探索更多

    1. The  x-  and y- axes are horizontal and vertical lines. What are the equations of the lines that describe the points on the  x-  and y- axes, respectively?
    ::1. x 轴和 y 轴是水平线和垂直线。描述 x 轴和 y 轴两点的线的方程式是什么?

    2.  Suppose you are at an all-you-can-eat pancake house where you can pay $8.99 and have all the pancakes you want. What if you graphed the number of pancakes you ate along the x- axis and the amount of money you have to pay along the y- axis. Would the line representing this situation be horizontal or vertical? Write the equation of the line that represents this situation.
    ::2. 假设你住在一个全能的煎饼房里,在那里你可以支付8.99美元,并拥有所有你想要的煎饼。如果你用图表显示你沿着x轴吃了多少煎饼,以及你必须沿着y轴支付多少钱。代表这种情况的线是水平的还是垂直的?写出代表这种情况的线的等式。

    3.  Mad Cabs have an unusual offer going on. They are charging $7.50 for a taxi ride of any length within the city limits. Graph the function that relates the cost of hiring the taxi ( y ) to the length of the journey in miles ( x ). Write the equation of the line that represents this situation.
    ::3. 疯狂出租车有不寻常的报价,在城市界限内乘坐任何长度的出租车要收费7.50美元,将雇用出租车的费用是的与行程的里程(x)有关。 写出反映这种情况的线的方程。

    by CK-12 shows an example similar to problem 3. 
    ::CK-12 显示一个类似于问题3的例子。

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix.

    ::请参看附录。

    PLIX
    ::PLIX

    Try this interactive that reinforces the concepts explored in this section:
    ::尝试这一互动,强化本节所探讨的概念: