由单式和FOIL方法乘法
章节大纲
-
You are asked to frame a picture. You want the width of the frame to be 5 inches longer than the width of the glass and the height of the frame to be 7 inches longer than the height of the glass. You measure the glass and find the height to width ratio is 4:3. By multiplying the length and the width, you can write a polynomial to describe the area that the picture in the frame will cover. In this section, we begin to discuss multiplying .
::您被要求设置图片框。 您希望框架宽度比玻璃宽度长5英寸,框架高度比玻璃高度长7英寸。 您测量了玻璃, 发现其高度与宽度之比是 4: 3 。 乘以长度和宽度, 您可以写一个多符号来描述框中图片所覆盖的区域。 在本节中, 我们开始讨论乘法 。Multiplying a Polynomial by a Monomial
::以单声道乘以多声道To multiply a polynomial by a monomial , there are a couple of previous concepts that we need to recall.
::要将多元性乘以单一性,我们需要回顾过去的一些概念。Example 1
::例1Simplify .
::简化( 5x3)(- 8x7) 。Solution: To multiply a monomial by a monomial, we need to recall the product rule of exponents : . Then, we multiply numbers with numbers and variables with variables.
::解决方案 : 要将一个单式乘以一个单式, 我们需要记住推手的产物规则 : bmbn=bm+n 。 然后, 我们用数字和变量来乘以数字和变量 。
:5x3 (- 8x7) = (58 (x3x7) = 40x( 3+7) 40x10)
WARNING
::警告It is a common mistake to multiply the exponents: .
::乘以指数是一个常见错误: x3x7x3x77x21。If we expand each of the terms , we can see why we need to add NOT multiply the exponents. The first term is , so we are multiplying three x 's together. The second term is where we are multiplying seven x 's together. All together the total number of x 's is ten x 's, or the sum of 3 and 7.
::如果我们对每个术语进行扩展, 我们可以看到为什么我们需要添加不乘以前例。 第一个术语是 x3=xxxxxxxx, 所以我们将三个 x 相乘。 第二个术语是 x7=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx, 我们乘以七个 x 共乘以七个 x 共乘。 x 共共共乘十 x 或三和七。Example 2
::例2Find .
::查找 2x( x2+4) 。Solution: Recall the that said . Here, we want to distribute the 2 x to each of the terms in the " data-term="Parentheses" role="term" tabindex="0"> parentheses .
::解答: 回顾 a(b+c) =ab+ac 所说的 a(b+c) =ab+ac。 在此, 我们要将 2x 分配给括号中的每个词 。
::2x(xx2+4) =( 2xxxx2) +( 2x4) = 2x3+8xWe can expand this idea to polynomials with more terms.
::我们可以用更多的条件 把这个想法推广到多教派by CK-12 demonstrates how to multiply a monomial and a polynomial.
::由 CK-12 演示如何乘以单式和多式。Example 3
::例3Find .
::查找 - 2x2( 3x3- 4x2+12x- 9) 。Solution: Use the distributive property to multiply by the polynomial.
::解决方案: 将分配属性乘以 2- 2x2 乘以多数值 。
::-2x2(3x3-4x2+12x-9)=(-2x2x2x3x3)+(-2x2x24x2)+(-2x2x2x12x)+(-2x2x2x12x)+(-2x2x2*9)\*6x5+8x4-24x3+18x2WARNING
::警告Make sure to distribute to all of the terms in the polynomial not just the first one.
::确保将多纪念书中的所有术语, 不仅仅是第一个术语。For example, .
::例如,-2x2(3x3-4x2+12x-9)6x5-4x2+12x-9。FOIL Method
::东帝汶方法FOIL is a mnemonic device used to organize your thinking while multiplying binomials by binomials. To , we need to distribute each of the terms in the first binomial to the second binomial.
::FOIL 是一个记忆设备, 用来组织您的思维, 同时将二进制乘以二进制。 为了 ., 我们需要将第一个二进制中的每个术语 分配到第二个二进制中 。FOIL Method
::东帝汶方法To multiply two binomials, we use the FOIL method.
::要乘以两个二进制, 我们使用FOIL方法。
:a+b) (c+d) = acFirst, 每一个二进制+外向器的第一个学期, 这个乘数+bcInner 的外部术语, 这个乘数+bdLast 的内在术语, 每一个二进制( a+b(c+d) = a+ad+bc+bd) = a+bc+bd
Example 4
::例4Find .
::查找(2x+5)(x-7)Solution: We use the FOIL method to organize our distributing of the terms in the first binomial to the second binomial and then add up the terms.
::解决方案:我们使用FOIL方法, 将术语在第一个二进制词和第二个二进制词中进行分配, 然后将术语加起来。
::F: 2xxxx=2x2x2O: 2x=7}14xI: 5xx=5xL: 5*7*35(2x+5)(x-7)=2x2-14x+5x-35=2x2-9x-35by CK-12 demonstrates how to multiply binomials .
::由 CK-12 演示如何乘以二元论。Example 5
::例5Find .
::查找( 7- 3x) 2。Solution: Since , we can use the FOIL method to square this binomial.
::解答:既然(7-3x)2=(7-3x)(7-3x)(7-3x),我们可以使用FOIL方法来平准这个二进制。
::F: 7_7=49O: 73x=49O: 73x_21xI: -3x7=21xL: - 3x_3x3x=9x2x7-3x(7-3x)=49-21x-21x+9x2=49-42x9x2Example 6
::例6You are asked to frame a picture. You want the width of the frame to be 5 inches longer than the width of the glass and the height of the frame to be 7 inches longer than the height of the glass. You measure the glass and find the height to width ratio is 4:3. Describe the area that the picture in the frame will cover.
::您被要求设置图片框。 您希望框架的宽度比玻璃宽度长5英寸,框架的高度比玻璃的高度长7英寸。 您可以测量玻璃, 并发现其高度与宽度之比是 4: 3 。 请描述框中图片覆盖的区域 。Solution: Since we do not know the exact dimensions of the picture, we can use x to represent the scale of the picture. That means the height will be and the width is . So, the frame's height is and the frame's width is . The area is the height times the width.
::解答: 由于我们不知道图片的准确尺寸, 我们可以使用 x 来表示图片的大小。 这意味着高度为 4x, 宽度为 3x。 因此, 框架的高度为 4x+7, 框架的宽度为 3x+5 。 区域是宽度的高度倍数 。
::A=( 4x+7)( 3x+5) =( 4x3x) +( 4x) +( 4x) 5) +( 7x3x) +( 7}5) +( 7= 12x2+20x+21x+35= 12x2+41x+35by Mathispower4u demonstrates how to determine the area of the shaded region by using our multiplication and subtraction of polynomials skills.
::Mathispower4u 展示了如何利用我们多面体技术的乘法和减法 来确定阴影地区的面积。Summary
::摘要-
To multiply a monomial by a polynomial distribute the monomial to each one of the terms in the polynomial and use the product rule of exponents.
::将单体体乘以多面体将单体体体分配到多面体中每个术语中,并使用推手的产品规则。 -
To multiply a binomial by a binomial use the FOIL method to organize distributing the terms in the first binomial to the second binomial.
::将二进制乘以二进制 使用FOIL方法 组织将第一个二进制的术语 分配给第二个二进制的术语
Review
::回顾Multiply the polynomial expressions.
::乘以多边表达式 。1.
::1. 5x(x2-6x+8)2.
::2.-x2(8x3-11x+20)3.
::3. 7x3(3x3-x2+16x+10)4.
::4. (x2+4)(x-5)5.
::5. (3x2-4)(2x-7)6.
::6. (9-x2(x+2))7.
::7. (5x-12)28.
::8. (4x+9)29.
::9.-x4(2xx+11)(3x2-1)10.
::10.-12x3(4x2+6x)(-9x+5)Explore More
::探索更多1. T he formula for the volume of a pyramid is , where B is the area of the base of the pyramid and h is the pyramid's height. What if the area of the base of a pyramid were and the height were ? What would the volume of the pyramid be?
::1. 金字塔体积的公式是V=13Bh,B是金字塔底部的面积,h是金字塔的高度;如果金字塔底部的面积是x2+6x+8,而高度是9x,金字塔的体积是多少?2. Find the volume of the figure below.
::2. 下图的数值如下。3. Suppose a factory needs to increase the number of units it outputs. Currently it has w workers, and on average, each worker outputs u units. If it increases the number of workers by 100 and makes changes to its processes so that each worker outputs 20 more units on average, how many total units will it output?
::3. 假设一个工厂需要增加其产出单位的数量,目前它有工人,平均每个工人产出单位,如果它将工人人数增加100人并改变其流程,使每个工人平均多生产20个单位,它将产出多少个单位?Answers to Review and Explore More Problems
::对审查和探讨更多问题的答复Please see the Appendix.
::请参看附录。 -
To multiply a monomial by a polynomial distribute the monomial to each one of the terms in the polynomial and use the product rule of exponents.