Section outline

  • A farmer can model the costs of producing x bushels of corn by 3.5 x 2 + 500 x . To find the average cost of producing bushels of corn, we can divide the total cost by the number of bushels. What expression models the average cost of a bushel of corn? To determine this, we will need to know how to simplify rational expressions, and we discuss that in this section.
    ::农民可以以3.5x2+500x来模拟生产玉米的x灌木的成本。 为了找到生产玉米灌木的平均成本,我们可以将总成本除以灌木的数量。 哪种表达方式可以以玉米灌木的平均成本为模型? 要确定这一点,我们需要知道如何简化合理表达方式,我们在本节讨论这一点。

    lesson content

    Rational Expressions
    ::理性表达式

    In this chapter, we will consider rational functions . A rational function is a function , f ( x ) , such that f ( x ) = p ( x ) q ( x ) , where p ( x ) and q ( x ) are both . Before we consider the functions, we will first work with   rational expressions , expressions of the form   p ( x ) q ( x ) . Rational expressions are examples of fractional expressions , which are expressions in which any algebraic expression is divided by any algebraic expression.
    ::在本章中, 我们将考虑合理的函数 。 理性函数是一个函数 f( x), 例如 f( x) = p( x) q( x) , 其中 p( x) 和 q( x) 两者都是 p( x) 和 q( x) 。 在我们考虑函数之前, 我们将首先使用理性表达式, 表达式 p( x) q( x) 。 理性表达式是分数表达式的示例, 即任何代数表达式被任何代数表达式除以的表达式 。

    Example 1
    ::例1

    Determine whether the following are rational expressions:  a.   - 4 x 3 + 6 x 5 x 2 + 1 ,   b.   2 x + 3 x ,   c.   4 - 0.75 x 2 + 2 ,   d.   8 x - 1 | x |
    ::确定以下是否为合理表达式: a. - 4x3+6x5x2+1, b. 2x+3x, c. 4- 0. 75x2+2, d. 8x-1x* 。

    Solution:
    ::解决方案 :

    a. - 4 x 3 + 6 x 5 x 2 + 1  is a rational expression . Both the numerator and the denominator are polynomials.
    ::a. -4x3+6x5x2+1 是一个合理的表达式。分子和分母都是多分子。

    b. 2 x + 3 x  is not a rational expression. The numerator involves a square root , which cannot be part of a polynomial .
    ::b. 2x+3x 不是一个合理的表达式。分子包含一个正方根,不能作为多面体的一部分。

    c. 4 - 0.75 x 2 + 2  is a rational expression. The numerator is a degree-zero polynomial. The denominator has real coefficients and non-negative integer exponents, so it is also a polynomial.
    ::c. 4- 0. 75x2+2是一个合理的表达式。分子是一个度为零的多元分子。分母有真实的系数和非负的整数指数,因此它也是一个多元分子。

    d. 8 x - 1 | x |  is not a rational expression. The numerator includes a negative exponent and the denominator includes absolute value . Neither can be part of a polynomial.  
    ::d. 8x-1x不是理性表达式。分子包括负引号,分母包括绝对值,也不能作为多元值的一部分。

    Simplifying Rational Expressions
    ::简化逻辑表达式

    Like any fraction , a rational expression can be simplified. Simplifying a rational expression, we use the same process we follow to simplify fractions with numbers: To factor the polynomials, determine if any factors are the same, and then cancel out any common factors. Compare these processes below
    ::与任何分数一样, 一个理性表达式可以简化。 简化一个理性表达式, 我们使用我们所遵循的相同程序来简化带有数字的分数 : 要将多数值因素考虑在内, 确定任何因素是否相同, 然后取消任何共同因素 。 比较下面的这些进程 。

    Fraction: 9 15 = 3 3 3 5 = 3 5
    ::分数: 915=333=35

    Rational Expression: x 2 + 6 x + 9 x 2 + 8 x + 15 = ( x + 3 ) ( x + 3 ) ( x + 3 ) ( x + 5 ) = x + 3 x + 5
    ::有理表达式: x2+6x+9x2+8x+8x+15=(x+3)(x+3)(x+3)(x+3)(x+5)=x+3x+5

    With both fractions, we factored  the numerator and denominator into prime factors. Then we canceled the common factors.
    ::使用两个分数, 我们将分子和分母 乘以质因子。 然后我们取消了共同因数 。

       

    To simplify rational expressions, factor the numerator and denominator and cancel the common factors. In general, for any expressions A, B, and C:
    ::为简化理性表达方式,乘以分子和分母,并取消共同因素。一般而言,对于任何表达式A、B和C,

    A C B C = A B .

    ::ACBC=AB(AB) (AB) (ABBC=AB) (AB) (ABBC=AB) (AB) (ABBC=AB) (AB) (ABBC=AB) (AB) (ABBC=AB) (AB) (ABBC=AB) (AB) (ABBC=(AB) (AB) (AB) (ABBC=(AB) (AB) (ABB) (ABB) (ABBC=(AB) (AB) (AB) (ABBC=(AB) (AB) (ABB) (ABC) (ABC) (ABC=(AB) (AB) (ABC) (ABC=(AB) (AB) (AB) (AB)。

    Example 2
    ::例2

    A farmer can model the costs of producing x bushels of corn by 3.5 x 2 + 500 x . To find the average cost of producing bushels of corn, we can divide the total cost by the number of bushels. What expression models the average cost of a bushel of corn?
    ::农民可以以3.5x2+500x来模拟生产玉米的x灌木的成本。 要找到生产玉米的x灌木的平均成本,我们可以将总成本除以灌木的数量。 什么表达方式可以以玉米灌木的平均成本为模型?

    Solution:  The expression that models the average cost is  3.5 x 2 + 500 x x , the total cost divided by the number of bushels. To simplify this, we start by factoring the numerator:
    ::解决方案: 平均成本为3.5x2+500xx的模型表达式, 总成本除以灌木数量。 为简化此选项, 我们首先对分子进行计数 :

    3.5 x 2 + 500 x x = x ( 3.5 x + 500 ) x = 3.5 x + 500.

    ::3.5x2+500xx=x(3.5x+500)x=3.5x+500。

    On average, it costs 3.5 x + 500  dollars to produce a bushel of corn.  
    ::平均而言,生产一棵玉米树的成本为3.5x+500美元。

    by The Farmer's Life demonstrates how  a farmer values one ear of corn.
    ::农民生命展示了农民如何重视一耳玉米。

     

    Example 3
    ::例3

    Simplify   3 x 2 x 3 x 2 .
    ::简化 3x2 - x3x2 。

    Solution: Factor the numerator and denominator, then cancel any common factors with the denominator. 
    ::解答:乘以分子和分母,然后用分母取消任何共同因素。

     

    3 x 2 x 3 x 2 = x ( 3 x 1 ) 3 x x = 3 x 1 3 x

    ::3x2-x3x2=x(3x-1)3xxxx=3x-13x

    Notice we do not cancel the  3 x   terms . The operation in the numerator is subtraction , not multiplication , so we cannot cancel.  
    ::注意我们不取消 3x 条件。 分子中的操作是减法, 不是乘法, 所以我们不能取消 。

    by Mathispower4u demonstrates how to simplify rational expressions.
    ::由 Mathispower4u 演示如何简化理性表达方式。

     

    Example 4
    ::例4

    Simplify 2 x 3 4 x 2 6 x .
    ::简化 2x34x2 - 6x 。

    Solution: The numerator factors as  2 x 3 = 2 x x x , and the denominator is 4 x 2 6 x = 2 x ( 2 x 3 ) .
    ::解析度:2x3=2xxxxxxxxx,分母为4x2-6x=2x(2x-3)。

    2 x 3 4 x 2 6 x = 2 x x x 2 x ( 2 x 3 ) = x 2 2 x 3

    ::2x34x2-6x=2xxxxxxxxxx2xxxx}(2x-3)=x22x-3

    Example 5
    ::例5

    Simplify x 2 6 x 27 2 x 2 19 x + 9 .
    ::简化 x2 - 6x - 272x2 - 19x+9 。

    Solution: Factor both the numerator and the denominator to see if there are any common factors.
    ::解决办法:将分子和分母都考虑在内,以确定是否存在任何共同因素。

    x 2 6 x 27 2 x 2 19 x + 9 = ( x 9 ) ( x + 3 ) ( x 9 ) ( 2 x 1 ) = x + 3 2 x 1

    ::x2 - 6x - 272x2-19x+9=(x- 9)(x+3)(x- 9)(2x-1)=x+32x-1

    Example 6
    ::例6

    Simplify 6 x 2 7 x 3 2 x 3 3 x 2 .
    ::简化 6x2 - 7x - 32x3 - 3x2 。

    Solution: F actor the numerator and find the GCF of the denominator. Cancel the common factors.
    ::解决方案: 乘以分子并找到分母的全球合作框架。 取消共同因素 。

    6 x 2 7 x 3 2 x 3 3 x 2 = ( 2 x 3 ) ( 3 x + 1 ) x 2 ( 2 x 3 ) = 3 x + 1 x 2

    ::6x2-7x-32x3-3x2=(2x-3)(3x+1)xxx2(2x-3)=3x+1x2x2

     

    Example 7
    ::例7

    Simplify  x 3 4 x x 5 + 4 x 3 32 x .
    ::简化 x3 - 4x25+4x3 - 32x

    Solution:   First we need to factor out the GCF, and then we can factor the remaining quadratic polynomials
    ::解决办法:首先,我们需要将绿色气候基金考虑在内,然后,我们可以将剩余的四边多面体因素考虑在内。

    x 3 4 x x 5 + 4 x 3 32 x = x ( x 2 4 ) x ( x 4 + 4 x 2 32 ) = x ( x 2 ) ( x + 2 ) x ( x 2 4 ) ( x 2 + 8 ) = x ( x 2 ) ( x + 2 ) x ( x 2 ) ( x + 2 ) ( x 2 + 8 ) = 1 x 2 + 8

    ::x3-4x5+4x5+4x3-32x=xx(x2-4)x(x4+4x2)x(x4+4x2-2-32)x(x-2)(x+2-2)x(x2-4(x2)+8)=x(x-2)(x+2)(x+2)xx(x-2)(x+2)(x+2)(x2+8)=1x2+8

    Example 8
    ::例8

    Simplify  3 x 6 x 18 .
    ::简化 3- x6x-18 。

    Solution:  The numerator is already prime. Let's factor the denominator.  
    ::解答: 分子已经是质数。 让我们来乘以分母 。

    3 x 6 x 18 = 3 x 6 ( x 3 )

    ::3-x6x-18=3-x6(x-3)

    Notice the binomial in the numerator and the binomial in the denominator have the same terms, but the signs are off. If we factor - 1  out of the numerator, we will have a common factor to cancel.
    ::注意分子中的二进制和分母中的二进制都有相同的条件, 但符号关闭了。 如果我们从分子中乘以 - 1, 我们将会有一个共同的取消因素 。

    3 x 6 ( x 3 ) = - 1 ( - 3 + x ) 6 ( x 3 ) = - 1 ( x 3 ) 6 ( x 3 ) = - 1 6

    ::3-x6(x-3)=-1(-3+x)6(x-3)=-1(x-3)6(x-3)=-1(x-3)6(x-3)=-16

    Example 9
    ::例9

    Simplify  x 2 + 6 x + 8 x 2 + 6 x + 9 .
    ::简化 x2+6x+8x2+6x+9。

    Solution:  
    ::解决方案 :

    x 2 + 6 x + 8 x 2 + 6 x + 9 = ( x + 4 ) ( x + 2 ) ( x + 3 ) ( x + 3 )

    ::x2+6x+8x2+6x6x+9=(x+4)(x+2)(x+3)(x+3)

    There are no common factors, so this is the simplest form .
    ::没有共同的因素,所以这是最简单的形式。

    by Randy Anderson demonstrates how to simplify rational expressions.
    ::Randy Anderson展示了如何简化理性表达方式。

     

       WARNING
    ::警告

    •   x + 3 x + 5    is completely factored. Do not cancel out the x ’s.  
      3 x 5 x   simplifies  to  3 5 , but  x + 3 x + 5    does not because of the addition sign. 
      To prove this, we will plug in a number for   x    to and show that the fraction does not simplify to    3 5 . If  x = 2 , then  2 + 3 2 + 5 = 5 7 3 5 .
      ::x+3x+5 已被完全计算。 不要取消 x。 3x5x 简化为35, 但由于添加符号, x+3x+5 并不代表此特性。 为了证明这一点, 我们将插入 x 的编号, 并显示该分数不简化为35。 如果 x=2, 那么 2+32+5=5735 , 则该分数不简化为35 。
    • You can only cancel one factor for one factor, not all factors that are the same. The following is incorrect:  ( x + 1 ) ( x + 2 ) ( x + 1 ) 2 ( x + 1 ) ( x + 2 ) ( x + 1 ) 2 = x + 2.  
      ::您只能取消一个因数的一个因数, 而不是所有相同的因数。 以下不正确 : (x+1)(x+2)(x+1)(x+1)(x+1)(x+2)(x+2)(x+2)(x+1)(x+1)(x+1)(x+1)(x+1)2=x+2) 。
    • You can cancel one factor from the numerator and one from the denominator, not two from the numerator or denominator. The following is incorrect:  ( x + 2 ) ( x + 3 ) ( x + 2 ) x + 4 ( x + 2 ) ( x + 3 ) ( x + 2 ) x + 4 = x + 3 x + 4 .  
      ::您可以从分子中取消一个因数, 从分母中取消一个因数, 而不是从分子或分母中取消两个因数。 以下不正确 : (x+2)(x+3)(x+2)(x+2)(x+2)x+4}(x+2(x+3)(x+2)x+4=x+3x+4) 。

    Summary 
    ::摘要

    • To simplify rational expressions, factor the polynomials in the numerator and denominator, and then cancel any common factors. 
      ::为了简化理性表达方式,在分子和分母中考虑到多数值,然后取消任何共同因素。

    Review
    ::回顾

    Simplify the following rational expressions:
    ::简化以下合理表达式:

    1. 4 x 3 2 x 2 + 3 x
    ::1. 4x32x2+3x

    2. x 3 + x 2 2 x x 4 + 4 x 3 5 x 2
    ::2. x3+x2-2x4+4x3-5x2

    3. 2 x 2 5 x 3 2 x 2 7 x 4
    ::3. 2x2 - 5x - 32x2 - 7x - 4

    4. 5 x 2 + 37 x + 14 5 x 3 33 x 2 14 x
    ::4. 5x2+37x+145x3-33x2-14x

    5. 8 x 2 60 x 32 - 4 x 2 + 26 x + 48
    ::5. 8x2-60x-32-4x2+26x+48

    6. 6 x 3 24 x 2 + 30 x 120 9 x 4 + 36 x 2 45
    ::6. 6x3-24x2+30x-12009x4+36x2-45

    7. 6 x 2 + 5 x 4 6 x 2 x 1
    ::7. 6x2+5x-46x2-x-1

    8. x 4 + 8 x x 4 2 x 3 + 4 x 2
    ::8. x4+8x24-2x3+4x2

    9. 6 x 4 3 x 3 63 x 2 12 x 2 84 x
    ::9. 6x4-3x3-63x212x2-84x

    10. x 5 3 x 3 4 x x 4 + 2 x 3 + x 2 + 2 x
    ::10. x5-3x3-4x4+2x3+x2+2x2+2xx

    11. - 3 x 2 + 25 x 8 x 3 8 x 2 + x 8
    ::11. -3x2+25x-8x3-8x2+x-8

    12. - x 3 + 3 x 2 + 13 x 15 - 2 x 3 + 7 x 2 + 20 x 25
    ::12. -x3+3x2+13x-15-2x3+7x2+20x-25

     

    Explore More
    ::探索更多

    1. Does x 2 x 6 simplify to 1 3 ? Explain why or why not. Does 5 x 10 x simplify to 1 2 ? Explain why or why not. In your own words, explain the difference between the previous two expressions and why one simplifies and one does not.
    ::1. x-2x-6 是否简化为 13 ? 解释原因或原因; 5x10x 简化为 12 ? 解释原因或原因; 用您自己的语言解释前两个表达式的区别,为什么一个简化而一个不简化。

    2.  The width of a rectangle is 6 x + 8 , and the length of the rectangle is 12 x + 16 . Determine the ratio of the width to the perimeter.
    ::2. 矩形宽度为6x+8,矩形长为12x+16。确定宽度与周边之比。

    3.  An isosceles triangle has two sides of length 9 x + 3 . The perimeter of the triangle is 30 x + 10 . Determine the ratio of the perimeter to the third side .
    ::3. 等分形三角形的两面长度为9x+3。三角形的周边为30x+10。确定周边与第三侧的比例。

    4.  The area of a rectangle is 2 x 4 2 . The width of the rectangle is x 2 + 1 . What is the length of the rectangle?
    ::4. 矩形区域为 2x4-2。 矩形宽度为 x2+1。 矩形的长度是多少?

    5. Error Analysis: Identify the error in Student A's work. Explain what the problem is. 
    ::5. 错误分析:查明学生A工作中的错误,解释问题是什么。

    x 2 2 x + 3 x 2 + 8 x + 12 = x 2 2 x + 3 x 2 + 8 x + 12 = - 2 x + 3 8 x + 12
       
    ::x2 - 2x+3x2+8x+12=x2 -2x+3x2+8x+12=2x+38x+12

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix. 
    ::请参看附录。

    PLIX
    ::PLIX

    Try this interactive that reinforces the concepts explored in this section.
    ::尝试一下这种互动关系,加强本节所探讨的概念。