Section outline

  • A planet's maximum distance from the sun (in astronomical units) is given by the formula d = p 2 3 ,  where p is the period (in years) of the planet's orbit around the sun 1 . If a planet's orbit around the sun is 27 years, what is its distance from the sun?
    ::一种行星与太阳的最大距离(天文单位)由公式d=p23给出,p是太阳周围行星轨道的周期(年)1。如果一个行星围绕太阳的轨道为27年,那么它与太阳的距离是多少?

    In this section, we cover how to interpret rational exponents like the one in the formula. 
    ::在本节中,我们将论述如何解释像公式中那样的合理推手。

    lesson content

    Rational Exponents
    ::理性指数

    Let's look at the square root and see if we can use the properties of exponents to determine what exponent taking a square root is equivalent to.
    ::让我们看看平方根 看看我们能否使用指数的属性 来确定何者代表平方根。

    Investigation: Writing the Square Root as an Exponent
    ::调查:将广场根写成指数

    1. Evaluate ( x ) 2 . What happens?
    ::1. 评价(x)2. 会发生什么?

    The and the 2   undo  each other, ( x 2 ) = x .
    ::和二人互相残杀,(x2)=x。

    2. Recall that according to the power rule, when a power is raised to another power, we multiply the exponents. Therefore , we can rewrite the exponent 2 and the exponent for the root  n  as an equation , n 2 = 1 . Solve for n .
    ::2. 回顾根据权力规则,当权力被提升到另一权力时,我们乘以推手,因此,我们可以重写推手2和根的推手n,作为方程式,n2=1. 解决n。

    n 2 2 = 1 2 n = 1 2

    ::n22=12n=12

    3. From Number 2, we can conclude that x = x 1 2 .
    ::3. 从2号,我们可以得出x=x12的结论。

    ( x ) 2 = ( x 1 2 ) 2 = x ( 1 2 ) 2 = x 1 = x

    :sadx)2=(x12)2=x(12)2=x(x)2=x1=x

    From this investigation, we see that x = x 1 2 We can extend this idea to the other roots as well: x 3 = x 1 3 , x 4 = x 1 4 , , x n = x 1 n .
    ::从这次调查中,我们可以看到 x=x12。 我们可以把这个想法扩展至其它根 : x3=x13, x4=x14,..., xn=x1n。

       The Definition of  a 1 n  
    ::A1n 的定义

     

    a 1 n = a n

    ::a1n=an

    Notice that the denominator of the fraction becomes the index of the radical
    ::注意分数分母成为激进指数

    Example 1
    ::例1

    Find 256 1 4 .
    ::找25614号

    Solution: Rewrite this expression in terms of roots. A number to the 1/4th power is the same as the 4th root .
    ::解析 : 用根重写此表达式。 第 1/ 4 位数与 第 4 根相同 。

    256 1 4 = 256 4 = 4 4 4 = 4

    Therefore, 256 1 4 = 4 .
    ::因此,25614=4。

        Power Rule of Radicals
    ::激进力量的统治

      a m n  =  a m n
    ::AM = AMn = AMn

    For any real number a ,   if m n   is in lowest terms an d m  and  n are int egers, then we can write
    ::对于任何真实数字a,如果 mn 以最低值计算, m 和 n 是整数,那么我们可以写

    a m n = a m n = ( a n ) m .

    ::AMN=AMN=(an)m。 (一)m。

    Note if n is even, then a 0 .  
    ::注意 n 是偶数, 然后 a% 0 。

    This property follows from the power rule of exponents: b m n = ( b m ) n .  To evaluate expressions with fractional exponents, we can apply the root and the integer exponent separately. We can see this approach in the following examples:
    ::此属性源自引言方的权力规则 : bmn= (bm)n。 要用分数引言方来评价表达式, 我们可以分别应用 root 和 整数引言方 。 我们可以在以下示例中看到此方法 :

    Example 2
    ::例2

    Find 49 3 2 .
    ::找4932号

    Solution:  Rewrite the expression using the power rule. 
    ::解答: 使用权力规则重写表达式 。

    49 3 2 = ( 49 1 2 ) 3 = 49 3 = 7 3 = 343
    It is usually easier to compute the root 1st and then raise the result to an integer power.  
    ::4932=(4912)3=493=73=343 通常更容易计算根1st,然后将结果提高到整数功率。

    o by Mathispower4u demonstrates how to evaluate an expression with rational exponents. 
    ::o Mathispower4u 演示如何用理性的推理来评价表达式。

     

    Example 3
    ::例3

    Evaluate.
    ::评估。

    a. 125 4 3
    ::a. 12543

    b. 256 - 5 8
    ::b. 256-58

    c. 81 1 2
    ::c. 8112

    Solutions:
    ::解决办法:

    a. 125 4 3 = ( 125 3 ) 4 = 5 4 = 625
    ::a. 12543=(1253)4=54=625

    b. 256 - 5 8 = ( 256 8 ) - 5 = 2 - 5 = 1 2 5 = 1 32
    ::b. 256-58=(2568-5=2-5=125=132)

    Note the index of a radical cannot be negative, so the factor of -1 needs to be included with the exponent in the numerator of the fraction. 
    ::请注意,激进分子的指数不能是负的,所以 -1 的系数需要与分数的分子数中的指数一起包含。

    c. 81 1 2 = 81 = ( 81 1 2 ) 1 2 = 81 1 4 = 9 = 3
    ::c. 8112=81=81=(8112)12=8114=9=3

    Example 4
    ::例4

    A planet's maximum distance from the sun (in astronomical units) is given by the formula d = p 2 3 ,  where p  is the period (in years) of the planet's orbit around the sun. If a planet's orbit around the sun is 27 years, what is its distance from the sun?
    ::公式 d=p23 给出了行星与太阳的最大距离( 天文单位) 。 公式 d=p23 给出了行星绕太阳运行的周期( 年) 。 如果行星绕太阳运行的轨道为27年,那么它与太阳的距离是多少?

    Solution: Substitute 27 for p and solve.
    ::解决方案:p和p和p的替代方案27。

    d = 27 2 3 27 2 3 = ( 27 1 3 ) 2 = 27 3 2 ( 27 3 ) 2 = 3 2 = 9
    Therefore, the planet's distance from the sun is 9 astronomical units.
    ::d=27232723=(2713)2=27322(273)2=32=9,因此,行星与太阳的距离为9个天文单位。

    by Mathispower4u demonstrates how to evaluate radical expressions on the TI-83/84. 
    ::Mathispower4u展示了如何评价TI-83/84的激进言论。

     

    Rationalizing the Denominator
    ::合理解析符号

    We often prefer not to leave a radical in the denominator because it can complicate future calculations.  The process to get rid of the radical in the denominator of a fraction is called rationalizing the denominator . Let's take a look at some examples. 
    ::我们常常不愿在分母中留下激进的分母,因为这会使未来的计算复杂化。 清除分母分母中的激进的过程叫做分母合理化。 让我们来看一下一些例子。

    Example 5
    ::例5

    Rationalize the denominator of 2 5 3 .
    ::理顺253的分母

    Solution:  To eliminate the radical in the denominator, we will multiply the numerator and the denominator of the fraction by enough factors of 1 to create 5 3 3  in the denominator.
    ::解答:为了消除分母中的激进, 我们将将分母的分子和分母乘以 1 的足够系数, 从而在分母中产生 533 。

    2 5 3 5 3 5 3 5 3 5 3 = 2 5 2 3 5 3 3 = 2 5 2 3 5

    There is no longer a radical in the denominator, so this fraction is rationalized. 
    ::分母中不再有一个激进的分母, 所以这个分母被合理化了。

    Example 6
    ::例6

    Rationalize the denominator of 4 3 2 .
    ::理顺43-2分母。

    Solution: To rationalize a fraction with two terms in the denominator, multiply by the conjugate of 3 2 , which is 3 + 2 .
    ::解决办法:使分母分母有两个术语的分母合理化,乘以3-2的组合,即3+2。

      

    4 3 2 3 + 2 3 + 2 = 4 ( 3 + 2 ) ( 3 2 ) ( 3 + 2 ) = 12 + 4 2 9 2 = 12 + 4 2 7

    by Mathispower4u demonstrates how to rationalize the denominator of a radical expression .
    ::Mathispower4u 展示了如何使激进表达方式的分母合理化。

     

    Summary
    ::摘要

    • Rational exponents of the form  a 1 n correspond to roots of the form  a n .
      ::窗体 a1n 的理性引言与窗体 a 的根对应。
    • To evaluate rational exponents, use the power rule of exponents to take the root and then apply the integer exponent.
      ::为了评估理性指数,使用指数规则根根,然后应用整数指数。
    • To rationalize a denominator with one term, multiply the numerator and the denominator by the radical the number of times in the index.
      ::要合理使用一个术语来理顺一个分母,将分子和分母乘以指数中的极端次数。
    • To rationalize a denominator with two terms, multiply the numerator and the denominator by the conjugate of the denominator.  
      ::要使一个分母合理化 有两个术语, 乘以分子和分母 乘以分母的组合。

    Review
    ::回顾

    Write the expressions below using roots, and then evaluate using a calculator. Answers should be rounded to the nearest hundredth.
    ::使用根写下面的表达式,然后使用计算器进行评估。答案应该四舍五入到最接近的百位。

    1. 72 5 3

    2. 95 2 3

    3. 125 3 4

    Evaluate the following without a calculator:
    ::在无计算器的情况下评价以下内容:

    4. 64 2 3

    5. 27 4 3

    6. 16 5 4

    7. 25 3 2

    8. 9 5 2

    9. 32 2 5

    10. 81 3 4

    Explore More
    ::探索更多

    1. According to Kepler's Third Law, T 2 = A 3 ,  where T  is the orbital period of the planet in years, and A  is the mean distance that the planet is from the sun in astronomical units (or, the semi-major axis of the ellipse, which is equal to half the sum of smallest and greatest distance from the sun) 1 .
    ::1. 根据开普勒第三定律,T2=A3,其中T是行星多年的轨道周期,A是行星与太阳之间天文单位的平均距离(或椭圆半主轴,等于离太阳最小和最大距离之和的一半)。 1

    a.  The Hohmann orbit is considered the most efficient orbit to reach Mars. To accomplish this orbit, a spaceship must 1st get free of Earth's gravity. Next it must increase its speed so that part of its orbit around the sun just grazes the orbit of Mars. A is 1.262 AU for the Hohmann Transfer Orbit. How long does it take to travel the Hohmann Transfer Orbit? 
    ::a. 霍赫曼轨道被认为是进入火星的最有效轨道。为了实现这一轨道,航天器必须首先摆脱地球的引力。接下来,它必须加快速度,使其围绕太阳的部分轨道只是擦拭火星轨道。A是霍赫曼转移轨道的1.262AU。要穿越霍赫曼转移轨道需要多长时间?

    b. To reach the sun directly from Earth, a spacecraft would need to be free of Earth's gravity. The orbit that is most efficient to reach the sun has a mean distance of A = 0.5 AU. How long would it take for a spacecraft from Earth to reach the sun?
    ::b. 要直接从地球到达太阳,航天器必须不受地球引力的影响,到达太阳最高效的轨道平均距离为A=0.5AU。从地球到太阳的航天器需要多长时间?

    The growth and decay formula is  y = a b t p , where a =  the initial amount, b = the growth factor (or decay factor, if b < 1), t = the time that has passed, p = the period for the growth or decay factor (the growth or decay interval), and y = the amount after the time that has passed.
    ::生长和衰变公式是 y=abtp,其中 a= 初始值,b= 生长系数(或衰变系数,如果b < 1),t= 已经通过的时间,p = 生长或衰变系数(生长或衰变间隔)的周期,y = 过了一段时间后的数量。

    2. If a gerbil population triples every 4 years, and the population starts with 20 gerbils, how many gerbils will there be in 12 years?
    ::2. 如果每4年,沙鼠人口增加三倍,人口从20个沙鼠开始,12年内将有多少沙鼠?

    3. If a scientist has 40 grams of a element that has a half-life of 6 hours, how much will exist after 18 hours?
    ::3. 如果科学家拥有40克半衰期为6小时的元素,18小时后将有多少?

    4. A certain bacteria triples every 8 hours. If there are currently 100 bacteria, how many bacteria will there be in 18 hours?
    ::4. 某些细菌每8小时增加3倍,如果目前有100种细菌,18小时内将有多少细菌?

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix. 
    ::请参看附录。

    PLIX
    ::PLIX

    Try these interactives that reinforce the concepts explored in this section:
    ::尝试这些强化本节所探讨概念的交互作用 :

    References
    ::参考参考资料

    1. "Kepler's Three Laws of Planetary Motion," last updated March 21, 2005,
    ::1. 2005年3月21日更新的2005年3月21日《凯勒三部行星运动法则》