Section outline

  • Halley's Comet appears in the sky approximately every 76 years. The comet was first spotted in the year 1531. 1 Find the n th   term rule and the 10 t h term for the represented by this situation. 

    A sequence like this is called an arithmetic sequence . We cover this type of sequence in this section. 
    ::像这样的序列被称为算术序列。 我们在本节覆盖了这种序列 。

    lesson content

    Arithmetic Sequences
    ::亚学序列

    An arithmetic sequence is a sequence in which the difference between two consecutive terms is constant. We call this difference the common difference
    ::算术序列是连续两个任期之间的差别不变的序列。我们称这一差别为共同差别。

    Example 1
    ::例1

    Find the common difference and n th  term rule for the arithmetic sequence: 2 , 5 , 8 , 11
    ::找到计算序列的通用差数和 nth 术语规则: 2,5,8,11...

    Solution: To find the common difference, we subtract consecutive terms.
    ::解决方案:为了找到共同的差别,我们将连续减掉。

    5 2 = 3 8 5 = 3   the common difference is   3 11 8 = 3

    ::5-2=38-5=3 共同差为311-8=3

    Now we can use our first term, 2, and common difference, 3, to find the n th term rule. The third term is 8 and 8 = 2 + (2 x 3). Similarly, the fourth term is 11 and 11 = 2 + (3 x 3). In general, we can obtain the term by adding 2 (the first term) to the product of 3 (the common difference) and n - 1 (where n is the term). Thus, number we multiply 3 by is one less than the term number. As a formula, that is:
    ::现在,我们可以用我们的第一个任期,2和共同的差别,3, 来找到第n个任期规则。第三个任期是8和8=2+2(2x3),同样,第四个任期是11和11=2+2(3x3),一般来说,我们可以通过在3(共同差别)和n-1(其中n为术语)的产物中增加2(第一个任期)和n-1(其中n为术语)来获得该术语。因此,我们乘以3乘以1比术语数少一个。作为一个公式,即:

    a n = 2 + ( n 1 ) ( 3 ) = 2 + 3 n 3 = 3 n 1.

    ::a=2+(n-1)(3)=2+3n-3=3n-1。

    Example 2
    ::例2

    Find the common difference and the n th   term rule for the sequence: 5 , - 3 , - 11 ,
    ::找出共同的区别 和Nth术语规则 序列: 5 -3 -11,...

    Solution:   The common difference is - 3 5 = - 8 . For the formula, the same idea holds as in example 1—the n th term is the 1st term, plus one less than the term number times the common difference. 
    ::解决方案: 常见的差别是 - 3 - 5= 8。 对于公式, 与例1中的相同概念是 1 - 第 n 个词是第一个词, 加上一个小于该词数乘以共同差数的词数 。

    a n = 5 + ( n 1 ) ( 8 ) = 5 8 n + 8 = - 8 n + 13

    ::a=5+(n-1)(-8)=5-8n+8=8n+8=-8n+13

    We can generalize a formula for an arithmetic sequence. First,  a n a n 1 = d , where a n 1 and a n represent two consecutive terms, and d represents the common difference.  Since the same value, the common difference, d , is added to get each successive term in an arithmetic sequence, we can determine the value of any term from the 1st term and how many times we need to add d to get to the desired term as illustrated below:
    ::我们可以概括一个计算序列的公式。 首先, an- an-1=d, 其中an- 1和代表两个连续任期, d 代表共同的差数。 由于相同值, 共同差数 d 被添加到一个算术序列中, 我们可以确定第一个任期中任何任期的值, 以及我们需要增加多少次 d 才能达到下面所述的预期任期:

    Let's consider the sequence  22 , 19 , 16 , 13 , , in which a 1 = 22 and d = - 3 .
    ::让我们来考虑一下顺序22,19,16,13... 其中a1=22和d=3

    a 1 = 22   o r   22 + ( 1 1 ) ( - 3 ) = 22 + 0 = 22 a 2 = 19   o r   22 + ( 2 1 ) ( - 3 ) = 22 + ( - 3 ) = 19 a 3 = 16   o r   22 + ( 3 1 ) ( - 3 ) = 22 + ( - 6 ) = 16 a 4 = 13   o r   22 + ( 4 1 ) ( - 3 ) = 22 + ( - 9 ) = 13 a n = 22 + ( n 1 ) ( - 3 ) a n = 22 3 n + 3 a n = 3 n + 25

    ::a1=22或22+(1-1)(3-3)=22+0=22a2=19或22+(2-1)(3)=22+(3-1)(3)=19a3=16或22+(3-1)(3-1)(3)=22+(6)=16a4=13或22+(4-1)(3)=22+(9)=22+(9)=13+(n-1)(3)=22-3n+3nn+3nn+3n+25

    Now we can generalize this into a rule for the n th  term of any arithmetic sequence.
    ::现在我们可以把它概括为 任何算术序列的第 n 术语的规则。

        n th Term of Arithmetic Sequence
    ::nth 亚学序列期数

    The n th term of an arithmetic sequence is given by
    ::计算序列的第 n 术语由

    a n = a 1 + ( n 1 ) d ,
    where  a 1  is the 1st term of the sequence and  d  is the common difference. 
    ::a=a1+(n-1)d,其中a1是序列的第一个条件,d是共同的区别。

    Example 3
    ::例3

    Find the  n th  term rule and thus the 100 t h term for the arithmetic sequence in which a 1 = - 9 and d = 2 .
    ::查找 nth 术语规则, 从而查找 a1=- 9 和 d= 2 的算术序列的第100个术语。

    Solution: We have what we need to substitute into the rule:
    ::解决:我们有我们需要的替代规则:

    a n = - 9 + ( n 1 ) ( 2 ) = - 9 + 2 n 2 = 2 n 11

    ::a=-9+(n-1)(2)=-9+2n-2n-2=2n-11

    Now to find the 100 t h term we can use our rule and replace n with 100: a 100 = 2 ( 100 ) 11 = 200 11 = 189
    ::现在找到第100个术语,我们可以使用我们的规则,用100:a=2(100)-11=200-11=189取代n。

    Example 4
    ::例4

    Halley's Comet appears in the sky approximately every 76 years. The comet was first spotted in the year 1531. Find the n th term rule and the 10th term for the sequence represented by this situation.
    ::Halley的彗星大约每隔76年出现在天空中一次。 彗星是1531年首次发现的。 找到以这种情形为代表的顺序的第 n 学期规则和第 10 学期 。

    Solution: From the information given, we can conclude that a 1 = 1 , 531 and d = 76 .
    ::解决办法:根据所提供的信息,我们可以得出a1=1,531和d=76。

    We now have what we need to substitute  into the rule:
    ::我们现在有需要替代的规则:

    a n = 1 , 531 + ( n 1 ) ( 76 ) = 1 , 531 + 76 n 76 = 76 n + 1 , 455

    ::a=1,531+(n-1)(76)=1,531+76n=76n+1,455

    Now, to find the 10 t h term we can use our rule and replace n with 10: a 10 = 76 ( 10 ) + 1 , 455 = 760 + 1 , 455 = 2 , 215.
    ::现在,为了找到第10个术语,我们可以使用我们的规则,用10:a10=76(10)+1,455=760+1,455=2,215取代n。

    by Mathispower4u shows several examples of arithmetic sequences. 
    ::由 Mathispower4u 表示数个算术序列的例子。

     

     

    Example 5
    ::例5

    Write the n th  term rule and find the 45 t h term for the arithmetic sequence with a 10 = 1 and d = - 6 .
    ::以 a10=1 和 d=6 来写入 nth 术语规则, 并找到算术序列的第 45 个术语 。

    Solution: To find the 1st term:
    ::解决方案:找到第一个术语:

    a 1 + ( 10 1 ) ( - 6 ) = 1 a 1 54 = 1 a 1 = 55

    ::a1+(10-1)(-6)=1a1-54=1a1=55

    Find the n th  term rule: a n = 55 + ( n 1 ) ( - 6 ) = 55 6 n + 6 = - 6 n + 61 .
    ::查找 nth 术语规则: an=55+(n- 1)(-6)=55- 6n+6=-6n+61。

    Finally, the 45 t h term: a 45 = - 6 ( 45 ) + 61 = - 209 .
    ::最后,第45个学期:a45=6(45)+61=209。

     

    Example 6
    ::例6

    Find the common difference, 1st term, and n th  term rule for the arithmetic sequence in which a 7 = 17 and a 20 = 82 .
    ::查找 7 = 17 和 a20= 82 的算术序列的常见差数, 第一个术语和 nth 术语规则 。

    Solution: We will start by using the n th  term rule for an arithmetic sequence to create two equations in two variables:
    ::解答: 我们首先使用 nth 术语规则来计算一个算术序列, 在两个变量中创建两个方程式 :


    a 7 = 17 a 20 = 82 a 1 + ( 7 1 ) d = 17 a 1 + ( 20 1 ) d = 82 a 1 + 6 d = 17 a 1 + 19 d = 82

    ::a7=17a20=82a1+(7-1)d=17a1+(20-1)d=82a1+6d=17a1+19d=82

     

    Solve the resulting system:
    ::解决产生的系统 :

    a 1 + 6 d = 17 a 1 + 6 d   = 17 - 1 ( a 1 + 19 d = 82 ) _ - a 1 19 d = - 82 _   - 13 d = - 65     d = 5

    ::a1+6d=17a1+6d=17-1(a1+19d=82) @a1-19d=-82_-13d=-65d=5

    Now, replacing d with 5 in one of the equations we get

    a 1 + 6 ( 5 ) = 17 a 1 + 30 = 17 a 1 = - 13.

    ::现在,将 d 替换为 5 方程式中的一个方程式, 我们得到 a1+6(5)=17a1+30=17a1=13。

    Using these values we can find the n th  term rule:
    ::使用这些价值,我们可以找到nth术语规则:

    a n = - 13 + ( n 1 ) ( 5 ) a n = - 13 + 5 n 5 a n = 5 n 18.

    ::a=-13+(n-1)(5)an=-13+5n-5an=5n-18。

    by CK-12 demonstrates how to find the n th  term rule given two terms. 
    ::CK-12 显示如何在两个任期中找到 nth 术语规则 。

     

     

    Example 7
    ::例7

    Find the common difference, 1st term, and n th  term rule for the arithmetic sequence in which a 11 = - 13 and a 40 = - 71 .
    ::为a11=-13和a40=-71的算术序列查找共同的差数,第一个术语和nth术语规则。

    Solution: Though this is the same question as the previous example, we are going to use a different approach. The n th  term rule uses the 1st term and adds  d to it n 1 times to find the n th  term. We are going to use this idea to find the common difference. To get from the 11 t h term to the 40 t h term, the common difference is added 40 11 or 29  times. The difference in the term values is - 71 ( - 13 )  or - 58 . What must be added 29  times to create a difference of - 58 ? We can subtract the terms and divide by the difference in term number to determine the common difference.
    ::解答: 虽然这是与前一个例子相同的问题, 我们将会使用不同的方法。 第n 术语规则使用第一个术语, 并给它添加 d- 1 次来查找 n- 1 次。 我们将使用这个概念来找到共同的差别。 从第 11 个术语到 第 40 个术语, 共同的差别会增加 40- 11 或 29 次。 术语值的差别是 - 71- (- 13) 或 - 58 。 要产生 - 58 的差别, 需要增加 29 次 ? 我们可以用 术语和 数字的差别来减去 。

    - 71 ( - 13 ) 40 11 = - 71 + 13 29 = - 58 29 = - 2

    So d = - 2 Now we can use the common difference and one of the terms to find the 1st term as we did previously.
    ::所以d=-2。现在我们可以使用共同的区别 和其中的一个术语 来找到我们之前的第一个术语。

    a 1 + ( 11 1 ) ( - 2 ) = - 13 a 1 + ( - 20 ) = - 13 a 1 = 7

    ::a1+(11-1)(-2)=-13a1+(-20)=-13a1=7

    Writing the n th  term rule, we get  a n = 7 + ( n 1 ) ( - 2 ) = 7 2 n + 2 = - 2 n + 9 .
    ::写入 nth 术语规则时, 我们得到 an=7+(n- 1)(-2)=7- 2n+2=-2n+9。

     

    Notice that the simplified n th  term rule, a n = p n + q , where p and q represent constants, looks a little like y = m x + b , the slope-intercept form of the equation of a line. Let's explore why this is the case using the arithmetic sequence 1 , 4 , 7 , 10 , If we create points by letting the x -coordinate be the term number and the y -coordinate be the term, we get the following points and can plot them in the coordinate plane as shown below:
    ::注意简化 nth 术语规则, an=pn+q, 其中 p和 q 代表常数, 看上去有点像 y=mx+b, 线形方程的斜度拦截形式。 让我们来探讨为什么使用算术序列 1, 4, 7, 10,... 如果我们通过让 x 坐标为术语编号而创建点, y 坐标为术语, 我们得到以下点, 并可以在坐标平面上绘制如下 :

    lesson content

    The points are  ( 1 , 1 ) , ( 2 , 4 ) , ( 3 , 7 ) , ( 4 , 10 ) .
    ::要点是(1,1),(2,4),(3,7),(4,10)。

    Notice that all these points lie on the same line. This happens because for each increase of 1 in the term number ( x ) , the term value "> ( y ) increases by 3. This common difference is actually the slope of the line.
    ::注意所有这些点都位于同一行。 这是因为每增加1个( x), 术语值Yes增加3个。 这个共同差实际上是线的斜坡 。

    We can find the equation of this line using the slope, 3, and the point ( 1 , 1 ) in the equation y = m x + b as follows:
    ::在y=mx+b的方程式中,用斜度3和点(1,1)来找到这条线的方程式如下:

    1 = 3 ( 1 ) + b 1 = 3 + b the equation of the line is   y = 3 x 2 - 2 = b

    ::1=3(1)+b1=3+bb 行的方程式是y=3x-2=b

    The n th  term rule for the sequence is thus  a n = 3 n 2 .
    ::因此,序列的 nth 术语规则为 an= 3n-2 。

    Example 8
    ::例8

    Find the common difference, 1st term, and n th  term rule for the arithmetic sequence in which a 10 = - 50 and a 32 = - 182 .
    ::为a10=-50和a32=-182的算术序列查找共同的差数,第一个术语和nth术语规则。

    Solution: This time we will use the concept that the terms in an arithmetic sequence are actually points on a line to write an equation. Here our points are ( 10 , - 50 ) and ( 32 , - 182 ) . We can find the slope and the equation as shown.
    ::解答: 这次我们将使用一个概念, 算术序列中的术语实际上是线上的点来写一个公式。 这里的点是( 10, 50) 和( 32, 182) 。 我们可以找到斜度和方程 。

    m = - 182 ( - 50 ) 32 10 = - 132 22 = - 6

    ::m=-182-(-5032-10=-13222=-6)

    Use the point ( 10 , - 50 )  to find the y -intercept:

    - 50 = - 6 ( 10 ) + b - 50 = - 60 + b 10 = b
    So y = 6 x + 10 and a n = - 6 n + 10 .
    ::使用点 (10,-50) 来查找 Y 界面 : - 50=-6(10)+b- 50=- 60+b10=bSo y6x+10 和 an=-6n+10 。

    Summary
    ::摘要

    • An arithmetic sequence is a sequence in which the difference between two consecutive terms is constant. We call this difference the common difference.
      ::算术序列是连续两个任期之间的差别不变的序列。我们称这一差别为共同差别。
    • The formula for an arithmetic sequence is  a n = a 1 + ( n 1 ) d .  
      ::算术序列的公式为 an=a1+(n-1)d。

    Review
    ::回顾

    Identify which of the sequences below is arithmetic. If the sequence is arithmetic, find the n t h term rule.
    ::下面的顺序是算术。如果序列是算术,请找到 nth 术语规则 。

    1.  2 , 3 , 4 , 5 ,

    2.  6 , 2 , - 1 , - 3 ,

    3.  5 , 0 , - 5 , - 10 ,

    4.  1 , 2 , 4 , 8 ,

    5.  0 , 3 , 6 , 9 ,

    6.  13 , 12 , 11 , 10 ,

    7.  4 , - 3 , 2 , - 1 ,

    8.  a , a + 2 , a + 4 , a + 6 ,
    ::8. a, a+2, a+4, a+6,...

    Write the n th  term rule for each arithmetic sequence with the given term and common difference.
    ::以给定的术语和常见差数为每个算术序列写入 nth 术语规则 。

    9.  a 1 = 15 and d = - 8
    ::9.1=15和d=8

    10.  a 1 = - 10 and d = 1 2
    ::10.1=-10和d=12

    11. a 3 = 24 and d = - 2
    ::11.3=24和d=-2

    12.  a 5 = - 3 and d = 3
    ::12.5=-3和d=3

    13.  a 10 = - 15 and d = - 11
    ::13.a10=-15和d=-11

    14.  a 7 = 32 and d = 7
    ::14.7=32和d=7

    15.  a n 2 = 3 n + 2 , find a n
    ::15. an-2=3n+2, 找到a

    Explore More
    ::探索更多

    1.  You are paying off a student loan in monthly installments. After your 5th payment, your remaining balance on the loan is $17,500. After your 16 t h payment, your remaining balance is $12,000. What is the n t h term rule for the sequence represented by this situation?
    ::1. 每月分期偿还学生贷款,第五个分期偿还后,贷款余额为17 500美元,第16个分期偿还后,余额为12 000美元。

    2. A sequence is harmonic if the reciprocals of the terms form an arithmetic sequence. Determine whether the following sequences are harmonic: 
    ::2. 如果术语的对等构成一个算术序列,则一个序列即为调和。

    a.  1 , 1 4 , 1 7 , 1 10 , 1 13 , . . .  
    ::a. 1,14,17,110,113,...

    b.  2 , 3 2 , 6 5 , 1 , . . .  
    ::b. 2,32,65,1,...

    3. An ant colony invades the caramels in a candy store. The 1st day they eat  1 4  of a caramel, the 2nd day  1 2  of a caramel, and the 3rd day  3 4 . How many will they eat on the 4th, 5th, and 6th days?  
    ::3. 蚂蚁聚居地侵入糖果店的焦糖,第一天他们吃14焦糖,第二天吃12焦糖,第三天吃34,第四、第五和第六天他们要吃多少?

    4. Determine whether the sequence  2 2 , 3 3 , 4 4 , 5 5 , 6 6 , 7 7 ,  is arithmetic. 
    ::4. 确定22,33,44,55,66,77... 序列是否算术。

    5. Do the sequences with formulas  a n = 3 n 1  and  a n = n + 7  have a common term?
    ::5. 公式 an=3n-1 和 an=n+7 的序列是否有共同的术语?

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix.
    ::请参看附录。

    PLIX
    ::PLIX

    Try the following interactives to reinforce  the concepts explored in this section:
    ::尝试以下互动来强化本节所探讨的概念:

    References
    ::参考参考资料

    1. "Halley's Comet," accessed May 12, 2017,
    ::2017年5月12日,