章节大纲

  • Section 7.2 Factoring Out the Greatest Common Factor
    ::第7.2节 考虑最大共同因素

    Review
    ::回顾

    1. 3 a 2 ( 12 + 3 a 2 a 5 )  
      ::3a2(12+3a-2a5)
    2. No common factors
      ::无共同因素
    3. 3 x ( x 2 7 )  
      ::3x(x2-7)
    4. 5 x 4 ( x 2 + 3 )  
      ::5x4(x2+3)
    5. 2 x ( 2 x 2 + 5 x 1 )  
      ::2x2x2+5x-1
    6. - 2 x 4 ( 5 x 2 6 x + 2 ) or 2 x 4 ( - 5 x 2 + 6 x 2 )  
      ::-2x4(5x2-6x+2-2)或2x2x4(-5x2+6x-2)
    7. 12 x y ( 1 + 2 y + 3 y 2 )  
      ::12xy(1+2y+3y2)
    8. a ( 5 a 2 7 )  
      ::a(5a2-7)
    9. 15 y 10 ( 3 y 2 + 2 )  
      ::15y10(3y2+2)
    10. 4 x y ( 4 y z + x 2 )  
      ::4xy( 4yz+x2)
    11. ( x + 3 ) ( 2 x + 4 )  
      :伤心x+3)(2x+4)
    12. ( 3 y 1 ) ( 4 y 2 5 )  
      :伤心3y-1)(4y2-5)
    13. ( 7 a + 11 ) ( 8 b 3 )  
      :伤心7a+11)(8b-3)
    14. ( 3 z 7 ) ( z 5 )  
      :伤心3z-7(z-5))
    15. ( a + b + c ) ( 4 a 3 b 2 c )  
      :伤心a) +b+c(4a-3b-2c)

    Explore More
    ::探索更多

    1. S A = 2 π r ( r + h )  
      ::SA=2r(r+h)
    2. S ( p ) = 5 p ( 2 + p )  
      ::S(p)=5p(2+p)
    3. Either, when x = 0  or x = 400
      ::或, 当 x=0 或 x=400 时

     

    Section 7.3 Factoring Special Quadratics
    ::第7.3节

    Review
    ::回顾

    1. ( x + 1 ) ( x 1 )  
      :伤心x+1)(x-1)
    2. ( x + 2 ) 2  
      :伤心x+2)2
    3. ( 4 x 3 ) 2  
      :伤心4x-3)2
    4. - 3 ( x 6 ) 2  
      ::-3(x-6)2
    5. ( 12 x + 7 ) ( 12 x 7 )  
      :伤心12x+7)(12x-7)
    6. ( 14 x + 5 ) 2  
      :伤心14x+5)2
    7. Not factorable
      ::不可考虑因素
    8. 2 ( 9 x + 2 ) 2  
      ::2(9x+2)2
    9. ( 15 + x ) ( 15 x )  
      :伤心15+x(15-x))
    10. ( 11 6 x ) 2  
      :伤心11-6x)2
    11. ( x ( 10 10 2 ) )  
      :伤心x-(10-102))
    12. 4 ( 8 x + 13 ) ( 8 x 13 )  
      ::4(8x+13)(8x-13)

     

    Explore More
    ::探索更多

    1. Spencer should have expanded the brackets instead of just squaring everything inside the brackets. He should have expanded ( 2 x 5 ) ( 2 x 5 )  to get the right answer.
      ::Spencer应该扩大括号,而不是仅仅将括号中的所有内容都分到一起。 他应该扩大(2x-5)(2x-5),以获得正确的答案。
    2. f ( b ) = b 2 a 2 ; f ( - b ) = ( - b ) 2 a 2 = b 2 a 2  
      :伤心b)=b2-a2;f(b)=(b)-2-a2;f(b)=(b)-2-a2=b2-a2
    3. Using the zero factor property, the hole would have a radius of 3. This does not make sense, for if the hole had a radius of 3, the washer would not exist.
      ::使用零因数属性,洞的半径为3,这没有意义,因为如果洞的半径为3, 洗衣机就不会存在。

     

    Section 7.4 Factoring the Sum and Difference of Cubes
    ::第7.4节 计算立方体的总和和差额

    Review
    ::回顾

    1. ( x 3 ) ( x 2 + 3 x + 9 )  
      :伤心x-3)(x2+3x+9)
    2. ( x + 4 ) ( x 2 4 x + 16 )  
      :伤心x+4)(x2-4x+16)
    3. 4 ( 2 x 1 ) ( 4 x 2 + 2 x + 1 )  
      ::4( 2x- 1)( 4x2+2x+1)
    4. ( 4 x + 7 ) ( 16 x 2 28 x + 49 )  
      :伤心4x+7)(16x2-28x+49)
    5. ( 8 9 x ) ( 64 + 72 x + 81 x 2 )  
      :伤心8-9x(64+72x+81x2))
    6. x ( 5 x + 2 ) ( 25 x 2 10 x + 4 )  
      :伤心x5x+2)(25x2-10x+4)
    7. 81 ( 2 x + 1 ) ( 4 x 2 2 x + 1 )  
      ::81(2x+1)(4x2-2-2x+1)
    8. 5 x 3 ( x 3 ) ( x 2 + 3 x + 9 )  
      ::5x3(x-3)(x2+3x+9)
    9. 2 x 4 ( 7 x 8 ) ( 49 x 2 + 56 x + 64 )  
      ::2x4(7x-8)(49x2+56x+64)
    10. ( 5 x + 1 ) ( 25 x 2 5 x + 1 )  
      :伤心5x+1)(25x2至5x+1)
    11. ( 4 9 x ) ( 16 + 36 x + 81 x 2 )  
      :伤心4-9x(16+36x+81x2))
    12. x ( 2 x 7 ) ( 4 x 2 + 14 x + 49 )  
      :伤心x2x-7)(4x2+14x+49)
    13. 5 x 2 ( x + 5 ) ( x 2 5 x + 25 )  
      ::5x2(x+5)(x2-5x+25)
    14. 2 ( 7 x + 10 ) ( 49 x 2 70 x + 100 )  
      ::2(7x+10)(49x2-70x+100)

    Explore More
    ::探索更多

    1. V = x ( 42 2 x ) ( 36 2 x ) ; V ( 1 ) = 1 , 360 i n 3 ;   V ( 3 ) = 3 , 240 i n 3 ;   V ( 5 ) = 4 , 160 i n 3 .
      ::V=x(42-2x)(36-2x);V(1)=1,360in3;V(3)=3,240in3;V(5)=4,160in3。
    2. 2 x , x 4 , and x 2 + 4 x + 16  
      ::2xx, x-4, 和 x2+4x+16
    3. b 2 4 a c = m 2 4 m 2 = - 3 m 2        
      ::b2-4ac=m2-4m2=-3m2

     

    Section 7.5 Factoring Quadratics When the Lead Coefficient Equals 1
    ::第7.5节 含铅系数等于1时的保理四方

    Review
    ::回顾

    1. ( x 2 ) ( x + 1 )  
      :伤心x-2)(x+1)
    2. ( x 4 ) ( x + 6 )  
      :伤心x-4(x+6))
    3. x ( x 6 )  
      :伤心x- 6) (xx-6)
    4. ( x + 3 ) ( x + 3 )  
      :伤心x+3)(x+3)
    5. Not factorable with whole number coefficients
      ::无法用整数系数计算
    6. ( x 6 ) ( x 5 )  
      :伤心x-6(x-5))
    7. ( x 2 ) ( x + 15 )  
      :伤心x-2(x+15))
    8. ( x + 4 ) ( x + 7 )  
      :伤心x+4(x+7))
    9. ( x 2 ) ( x 6 )  
      :伤心x-2)(x-6)
    10. ( x 11 ) ( x + 4 )  
      :伤心x-11)(x+4)
    11. ( x 10 ) ( x + 2 )  
      :伤心x-10)(x+2)
    12. ( x + 3 ) ( x + 1 )  
      :伤心x+3)(x+1)
    13. Not factorable
      ::不可考虑因素
    14. ( x 9 ) ( x + 4 )  
      :伤心x-9)(x+4)
    15. x ( x + 1 )  
      ::x(x+1)
    Explore More
    1. Answers will vary. Should include something about the sum b having many more options than the factors of c .
      ::答案会有所不同。 答案应该包括总和 b 中比 c 因素有更多的选择。
    2. x 2 12 x + 36 = ( x 6 ) ( x 6 )  and x 2 64 = ( x + 8 ) ( x 8 ) .  Preference will vary. 
      ::x2-12x+36=(x-6)(x-6)和 x2-64=(x+8)(x-8)-(8))。

     

    Section 7.6 Factoring Quadratics When the Lead Coefficient is Not Equal to 1
    ::第7.6节 当铅系数不等于1时的保理四方

    Review
    ::回顾

    1. ( 5 x + 3 ) ( x + 3 )  
      :伤心5x+3(x+3))
    2. 3 x ( 2 x 7 )  
      ::3x(2x-7)
    3. ( 2 x + 1 ) ( 5 x 3 )  
      :伤心2x+1)(5x-3)
    4. ( 3 x 4 ) ( x + 2 )  
      :伤心3x-4(x+2))
    5. ( 2 x + 1 ) ( 2 x + 3 )  
      :伤心2x+1)(2x+3)
    6. 6 ( 2 x 2 2 x 3 )  
      ::6( 2x2 - 2x3) 6( 2x2 - 2x3)
    7. ( 8 x + 1 ) ( 2 x 1 )  
      :伤心8x+1)(2x-1)
    8. 5 ( x 3 ) ( x 4 )  
      ::5(x-3)(x-4) 5(x-3)(x-4)
    9. ( 2 x + 1 ) ( x + 3 )  
      :伤心2x+1(x+3))
    10. 3 ( x 2 + x + 9 )  
      ::3(x2+x9)
    11. 2 ( 4 x + 1 ) ( x 2 )  
      ::2(4x+1)(x-2)
    12. ( 10 x 3 ) ( x + 3 )  
      :伤心10x-3(x+3))
    13. ( 2 x + 3 ) ( 2 x + 3 )  
      :伤心2x+3)(2x+3)
    14. 5 x ( 3 x + 7 )  
      ::5x(3x+7)
    15. ( 2 x 3 ) ( 3 x 5 )  
      :伤心2x-3(3x-5))

    Explore More
    ::探索更多

    1. ( 3 x + 4 )  by ( 3 x + 4 )  
      :伤心3x+4)(3x+4)(3x+4)
    2. 4.5 seconds
      ::4.5秒
    3. Factoring out a leaves x 2 + b a x + c a .  To find the factors, you can use the quadratic formula. 
      ::正在计算叶子 x2+bax+ca。 要找到系数, 您可以使用二次公式 。

    Section 7.7 Factoring by Grouping
    ::第7.7节 分组计保

    Review
    ::回顾

    1. ( x 4 ) ( x 2 + 3 )  
      :伤心x-4(x2+3))
    2. ( x + 6 ) ( x + 3 ) ( x 3 )  
      :伤心x+6)(x+3)(x-3)
    3. ( 3 x 4 ) ( x 2 + 5 )  
      :伤心3x-4(x2+5))
    4. ( 2 x 3 ) ( x 2 ) ( x 2 + 2 x + 4 )  
      :伤心2x-3(x-2)(x2+2x+4))
    5. ( x + 1 ) ( 2 x + 5 ) ( 2 x 5 )  
      :伤心x+1)(2x+5)(2x-5)
    6. ( 2 x + 9 ) ( 2 x 2 5 )  
      :伤心2x+9)(2x2-5)
    7. ( 2 x + 3 ) ( 3 x 5 ) ( 4 x 2 6 x + 9 )  
      :伤心2x+3)(3x-5)(4x2-6x+9)
    8. ( 5 x + 2 ) ( 3 x 2 2 )  
      :伤心5x+2)(3x2-2)
    9. ( 4 x + 5 ) ( x + 5 ) ( x 5 )  
      :伤心4x+5)(x+5)(x-5)
    10. ( 3 x 2 ) ( x 2 + 4 )  
      :伤心3x-2(x2+4))
    11. ( x 6 ) ( 3 x + 2 ) ( 3 x 2 )  
      :伤心x-6)(3x+2)(3x-2)
    12. ( x + 3 ) ( x 3 ) ( x 2 + 3 x + 9 )  
      :伤心x+3)(x-3)(x2+3x+9)
    13. ( x 2 ) ( x + 2 ) ( x 2 )  
      :伤心x-2)(x+2)(x-2)

     

    Explore More
    1. x ,   x 9 ,   3 x 3 2  
      ::x, x- 9, 3x3-2
    2. x 3 + 6 x 2 12 x 72 = ( x 6 ) ( x 2 12 ) . Therefore,  x = 6  or  x = 12 .  
      ::x3+6x2-12x-72=(x-6)(x2-12) 因此, x=6 或 x12。

    Section 7.8 Factoring Algebraic Expressions That Are Quadratic in Form
    ::第7.8节 刻度表层的乘数代数表达式

    Review
    ::回顾

    1. ( x + 2 ) ( x 2 ) ( x 2 2 )  
      :伤心x+2)(x-2)(x2-2)(x2-2)
    2. ( x 4 + 5 ) ( x 2 3 ) ( x 2 + 3 )  
      :伤心x4+5)(x2-3)(x2+3)
    3. ( x 2 15 ) ( x 2 3 )  
      :伤心x2-15)(x2-3)
    4. ( 4 x 2 + 1 ) ( x 2 3 )  
      :伤心4x2+1)(x2-3)
    5. ( 2 x 5 + 1 ) ( 3 x 5 + 8 )  
      :伤心2x5+1)(3x5+8)
    6. 2 x ( 3 x 2 2 ) ( x 2 + 5 )  
      ::2x(3x2-2)(x2+5)
    7. ( x + 2 ) ( x 2 ) ( 2 x 2 + 3 )  
      :伤心x+2)(x-2)(2x2+3)
    8. 3 x 2 ( 4 x 2 + 3 ) ( x 2 + 5 )  
      ::3x2(4x2+3)(x2+5)
    9. ( 3 x 3 1 ) ( x 3 + 6 )  
      :伤心3x3-1)(x3+6)
    10. ( x 1 ) ( x 1 )  
      :伤心________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

     

    Explore More
    1. 5 x ,   2 x + 1 ,   x 3  
      ::5x, 2x+1, x-3

     

    Section 7.9 Connections: Proving Formulas Geometrically
    ::第7.9节 连接: 以几何方式检验公式

    1. A = a 2 + 2 a b + b 2  
      ::A=a2+2ab+b2 A=a2+2ab+b2
    2. A = R 1 + R 2 + R 3 + R 4  
      ::A=R1+R2+R3+R4
    3. R 1 + R 2 + R 3 + R 4 = a 2 + 2 a b + b 2  
      ::R1+R2+R3+R4=a2+2ab+b2
    4. A = a 2 b 2  
      ::A=a2 - b2
    5. A = ( a + b ) ( a b )  
      ::A=(a+b)(a-b)
    6. a 2 b 2 = ( a + b ) ( a b )  
      ::a2-b2=(a+b)(a-b)
    7. a 3 + b 3  
      ::a3+b3 键
    8. a 2 ( a + b ) ( a 2 b ( a b ) + b ( a b ) 2 )  
      :伤心a) (a) (a) (a) (b) (a) (a) (b) (a) (a) (b) (a) (b) (a) (a) (b) (a) (a) (a) (a) (b) (a) (a) (a) (a) (a) (a) (a) (a) (b) (a) (b) (b) (b) (b) (a) (b) (b) (a) (a) (a) (b) (b) (a) (b) (a) (b) (a) (a) (b) (a) (a) (b) (a) (b) (a) (b) (a) (a) (b) (b) (a) (a) (a) (b) (a) (a) (b) (a) (a) (a) (b) (a) (b) (a) (b) (a) (b) (b) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (b) (a) (b) (a) (b) (a) (b) (b) (a) (a) (a) (a) (a) (b) (a) (a) (b) (b) (b) (b) (a) (b) (b)
    9. ( a + b ) 3 b 2 ( a b ) b ( a b ) 2  
      :伤心a+b)3-b2(a-b)-b(a-b)2
    10. a 3 + b 3 = ( a + b ) ( a 2 2 a b + b 2 )  
      ::a3+b3=(a+b)(a2-2ab+b2)
    11. V = a 3 b 3  
      ::V=a3-3-b3 级
    12. Prism 1: a 2 ( a b ) ;  Prism 2: b a ( a b ) ;  Prism 3: b ( a b ) 2  
      ::棱晶1:a2(a-b);棱晶2:ba(a-b);棱晶3:b(a-b)2
    13. V = ( a b ) ( a 2 + 2 a b + b 2 )  
      ::V=(a-b)(a2+2ab+b2)