Section outline

  • When we apply trigonometry, it is important to have a complete toolbox of mathematical techniques to use. Trigonometric functions extend Euclidean geometry to solve problems in many areas, such as surveying and astrophysics.
    ::当我们应用三角测量时,必须有一个完整的数学技术工具箱来使用。三角测量功能扩展了欧几里德几何学,以解决许多领域的问题,例如测量和天体物理学。

    Chapter Summary
    ::章次摘要

    In this chapter we learned about:
    ::在本章中,我们了解到:

    Special Right Triangles
    ::特别右三角

    • A 30-60-90 right triangle has side ratios  x , x 3 ,  and  2 x
      ::A 30-60-90右三角有侧翼比率x、x3和2。
    • A 45-45-90 right triangle has side ratios  x , x ,  and  x 2
      ::A 45-45-90右三角形有侧比x、x和x2。
    • Pythagorean triples are special right triangles with integer sides.
      ::毕达哥林三重三角形是特殊的右三角形,有整边。

    Right Triangle Trigonometry
    ::右三角三角三角三角三角形

    • sin θ = o p p h y p
      ::一九九九一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一二一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
    • cos θ = a d j h y p
      ::
    • tan θ = o p p a d j
      ::
    • cot θ = a d j o p p
      ::cotadjopp 连接
    • sec θ = h y p a d j
      ::
    • csc θ = h y p o p p
      ::csc

    Law of Cosines
    ::科士法

    • a 2 = b 2 + c 2 2 b c cos A b 2 = a 2 + c 2 2 a c cos B c 2 = a 2 + b 2 2 a b cos C
      ::a2=b2+c2+c2-2bccosAb2=a2+c2-2acosBc2=a2+b2-2abcosC

    Law of Sines
    ::Sines法律

    • Form   1 : sin A a = sin B b = sin C c Form   2 : a sin A = b sin B = c sin C
      ::表格1:sinaa=sinBb=sinCform2:asinA=bsinB=csinC

    Area Formulas
    ::区域公式

    • Area = 1 2 a b sin C  
      ::面积=12absinC
    • Heron's Formula: Area = s ( s a ) ( s b ) ( s c )  with s = a + b + c 2   
      ::Heron的公式:面积=(s-a)(s-b)(s-c)和s=a+b+c2

     

    Review
    ::回顾

    Try the following cumulative review problems to practice the concepts in this chapter:
    ::尝试下列累积审查问题来实践本章中的概念: