线条矢量方对数
Section outline
-
Introduction
::导言Air traffic control is tracking two planes in the vicinity of the airport. At a given moment, one plane is at a location 45 km east and 120 km north of the airport. The second plane is located 63 km east and 96 km south of the airport. The first plane is flying directly toward the airport, while the second plane is continuing at a constant altitude, with a heading defined by the vector to land eventually at another airport northwest of our air traffic controllers. Do the paths of these two aircrafts cross?
::空中交通管制局正在机场附近跟踪两架飞机,在某一时刻,一架飞机位于机场以东45公里和以北120公里处,第二架飞机位于机场以东63公里和以南96公里处,第一架飞机正直接飞往机场,第二架飞机正以恒定高度飞行,航向由矢量h23-4确定,最后降落在我国空中交通管制员西北的另一个机场。Vector Equation of a Line
::线条矢量方对数In a two-dimensional plane, a line can be represented by the equation , where is the slope of the line and is the -intercept.
::在二维平面中,一线可以用y=mx+b等式表示,其中 m 是线的斜度, b 是 y 界面 。One way to identify points on a line can be found using the vector addition method we discussed earlier in this chapter. To find the position vector, , for any point along a line, we can add the position vector of a point on the line that we already know, and add to that a vector, , which lies on the line as shown in the diagram below.
::使用我们在本章前面讨论过的矢量添加方法可以找到一条线上的点。要找到线上任何一点的位置矢量,我们可以在我们已经知道的线上添加一个点的定位矢量,并添加一个矢量 v,该矢量位于下图所示的线上。The position vector for a point between P and Q is given by .
::P和Q之间的一个点的位置矢量 r 由 rpv 给出。All other points on this line can be reached by traveling along the line from point P. Therefore, the position vector for any point on the line is given by where is a real number.
::这条线上的所有其它点都可以通过从P点沿线运行达到。 因此,线上任何点的位置矢量由 rptv给出, t是真实数字 。If we know the locations of two points on a line, we can determine the equation of the line. All points on a line fulfill the equation , where k is a scalar that varies from -∞ to ∞. If we already know the position vectors for two points on the line, and , we can use the method of vector subtraction to determine the equation of the vector, . Therefore, where varies from to .
::如果我们知道线上两个点的位置, 我们可以确定线的方程 。 线上的所有点都符合 rptv, k 是从 至 不等的弧度 。 如果我们已经知道线上两个点的位置矢量, p 和 q, 我们可以使用矢量减法来决定矢量的方程, vpq。 因此, rpt( pq) , 则从 到 不等 。The following video provides the formula for finding the vector equation of a line, and demonstrates how to use the formula with two examples:
::以下视频为寻找一条线的矢量方程式提供了公式,并用两个例子演示如何使用公式:Examples
::实例Example 1
::例1Write the equation of as a vector equation.
::将 y53x+5 的方程式写成矢量方程式。Solution:
::解决方案 :Start by choosing two points on the line, say (3,0) and (6,-5). Then, and . So,
::首先在线上选择两点, 如 (3,0) 和 (6,5) 。 然后, p 3, 0 和 q 6, 5 。 所以,
::-=YTET -伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=-伊甸园字幕组=- 翻译:Finally, the vector equation of the line is
::最后,线的矢量方程式是
::3,0,3,5,3,3,3,3,3,3,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,3,5,5,5,5,5,5,5,5,5,5,5,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,3,5,5,5,5,5,5,5,5,5,5,5,5,3,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5Example 2
::例2Determine the equation for the line defined by the points P = (6, 7) and Q = (3, 2). Then find the position vector for a point, R, halfway between these two points.
::确定由 P = (6, 7) 和 Q = (3, 2) 所定义的线条的方程,然后找到两个点之间一半的 R 点的位置矢量。Solution:
::解决方案 :The vector of the line connecting the two points is given by
::连接两个点的线条矢量由
:六至三) (七至二) 3-5。
The equation of the line then becomes
::然后直线的方形变成
::6,7t3,5。Since the vector points from P , the value of for a particular point gives us some information about the location of that point. If , the point lies on the line between P and Q . If , the point is not between P and Q and is closer to P than Q . If , the point is not between P and Q and is closer to Q.
::由于矢量 v 点来自 P, t 对特定点的值为我们提供了关于该点位置的一些信息。 如果 0 < t < 1, 点位于 P 和 Q 之间的线条上。 如果 t < 0, 点在 P 和 Q 之间, 点在 P 和 Q 之间, 点在 P 和 Q 之间, 点在 P 和 Q 之间。 如果 t > 1 , 点在 P 和 Q 之间, 点在 Q 之间 。The point halfway between the two points has .
::两点之间的中间点为 t=12。
::6,7123,56+1.5,(7+2.5) 7.5,955Example 3
::例3Do the two vectors and intersect?
::两种矢量 D1, -11, -11 和 F2,4f,2,11 交叉吗?Solution:
::解决方案 :If the two vectors intersect, there must be a point identified by position vector that satisfies the equations of both lines. In other words, we must be able to find values for d and f such that
::如果两个矢量交叉, 则必须有一个由位置矢量 p 确定的点, 满足两行的方程式。 换句话说, 我们必须能够找到 d 和 f 的值, 以便 DF 或 1, - 1 d 1, 1 , - 1 2, 4 f 2, 1 . 。 如果 D 和 F 的矢量的每个组成部分必须独立相等 。
::1+d=2+2+2f-2-1-d=4+fBy solving this system using elimination, .
::通过消除这一系统, d3 和 f2 来解决这一系统。Thus,
::因此,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,2,2,2,2,2,2,4,4,4,2,2,2,2,2,2,4,2,2,2,2,2,2,2,2,2,2,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,4,4,4,4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,Both e quations are equally satisfied, so the two lines do intersect and the point of intersection is (-2, 2).
::两个方程都同样满足,因此两条线相互交叉,交叉点是(2、2和2)。Example 4
::例4Recall the problem from the Introduction: O ne plane is at a location 45 km east and 120 km north of the airport. The second plane is located 63 km east and 96 km south of the airport. The first plane is flying directly toward the airport, while the second plane is continuing at a constant altitude, with a heading defined by the vector to land eventually at another airport northwest of our air traffic controllers. Do the paths of the two aircraft cross?
::回顾导言中的问题:一架飞机位于机场以东45公里和以北120公里处,第二架飞机位于机场以东63公里和以南96公里处,第一架飞机直飞机场,而第二架飞机则以恒定高度飞行,航向由矢量H23-4确定,最终降落在我国空中交通管制员西北的另一机场。Solution:
::解决方案 :The first thing we need to do is to determine the position vectors of the two planes. Define our airport as the origin of coordinates, and define = east and = north. Call the position of the first plane P, and the position of the second plane Q . This gives and
::首先我们需要做的是确定两架飞机的位置矢量。 定义我们的机场为坐标源, 定义 x = 东和 y = 北。 调用第一平面 P 的位置和第二平面 Q 的位置。 这给出了 p 45, 120 和 q 63,- 96 。The first plane is heading directly toward the airport. The vector from the position of this plane to the origin is given by
::第一架飞机正直接朝机场飞去,从飞机位置到原点的矢量由 vtrompp(0-45),(0-120)45,-120提供。The equation of the line representing the first plane's motion then becomes
::代表第一架飞机运动的直线等式随后成为r145,120t145,-120。The second plane continues at a constant altitude with a heading . The equation of the line representing this plane is
::第二架飞机继续以恒定高度飞行,标题为h23,4。代表该飞机的直线方程式是 r263,-9623,4。If the paths of the two planes intersect, the position of that intersection must have coordinates that satisfy both equations. In other words, .
::如果两平面的路径交叉,该十字路口的位置必须具有符合两个方程式的坐标。换句话说,v1v2。
::45-45t1=63+3t2120-120t196+4t2By solving this system using elimination, .
::通过使用消除方法解决这一系统,T1=4和t266。Thus,
::因此,45,120145,-12045,120445,120180,-480135,-36063,-962,3,463,-9666,3,463,-96198,-264135,-360。Both equations are equally satisfied, so the two paths of the planes do intersect, and the point of intersection is (-135, 360). Therefore, the air traffic controller should take the next step to consider speed and altitude as well to determine if they simply have the same path or will be in danger of crashing.
::这两个方程式都同样满足,所以这两架飞机的两条路径相互交叉,而交叉点是(135,360 ) 。 因此,空中交通管制员应该采取下一步考虑速度和高度,并确定它们是否只是有相同的路径或者有坠毁的危险。Example 5
::例5In physics, the motion of an object traveling at a constant speed is described by the equation where s i is the initial position, s t is the position at some later time t , and v is the velocity of the object. Write the vector equation that returns the set of position vectors for an object having an initial position and a velocity of and determine the object's location at t = 10 s.
::在物理学中,以恒定速度飞行的物体的动作由公式 stsivt 描述,该方程式的初始位置是 si, stt 是稍后时间的方位 t, v 是天体的速度。 写入矢量方程, 该矢量方程返回位置矢量 s 的一组位置, 该天体初始位置是 si2, 3 和 v1, 1 的速率, 并确定天体在 t = 10 s 的位置 。Solution:
::解决方案 :
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}At t = 10 s,
::T = 10秒,
::2+10,3+10 12,13+10Example 6
::例6An object has a position of at t = 0 and a velocity of . Use the vector equation to determine the distance traveled by the object between t = 3 s and t = 5 s. (Distance is measured in meters.)
::对象的方位为 si3,3at t = 0, 速度为 v10,7。使用矢量方程式 ssivt 来确定天体在 t = 3 s 和 t = 5 s 之间行走的距离(偏差以米计)。Solution:
::解决方案 :The vector equation describing the motion of the object is
The object's position at t = 3 s is obtained from the vector equation:
The object's position at t = 5 s is obtained from the vector equation:
The distance traveled between these two points is the magnitude of the vector starting at (33, 24) and ending at (53, 38).
Now we can use the Pythagorean Theorem to determine the magnitude of the vector.
::描述对象运动的矢量方程式是 ssiv3,33410,73+3+10,3+73+73+3。天体在 t = 3 = 3 = 33,33(3)10,733+10,3+3+10}3+73+73+3⁄7。天体在 t = 3 = 3 = 3 = 3 = 3 = 3 = 3的方程式位置来自矢量方方方方方方方方方方方程式: s 33,33333,73+10{3+10} 3+710(5),3+7+7(5),553,38}。天体之间的距离是从 (33,38) 到(53,38) 。现在我们可以使用 Pytagorena2+b2+(20) 7米。Determine the vector equation of the straight line defined by the points (2, 2) and (1, 3).
::确定由点(2、2)和点(1、3)界定的直线的矢量方程式。Solution:
::解决方案 :These two points have position vectors and . The vector of the line connecting the two points is given by
The equation of the line is
::这两个点都有位置矢量 p2,2 和 q1,3。连接这两个点的线的矢量由 vpq2(2-1) 2(2-3) 1,-1提供。该线的方程式是 r2,2t1,-1。Summary
::摘要-
The
vector form of the equation of a line
is:
::rár0tvx0,y0t<a,b>。
::线条方程式的矢量形式为: rr0tvx0, y0t<a, b>。
Review
::回顾Write the vector equation of the line defined by the the following points:
::写入由以下各点定义的线条矢量方程式:-
and
:第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第1款、第5款)
-
and
:2,-9)和(8,4)
-
and
:15,3)和(4,3)
-
and
:-1-1)和(3,11)
-
and
:1,-3)和(-5,3)
-
and
:25、17和16、12)
Determine if the two vectors intersect each other. If so find the point of intersection.
::确定两个矢量是否相互交错。如果是,则找到交叉点。-
and
::D2,35,35,35,533333333333335333333333353333333333333353333335333333333333333333333333333333333333333333333333 -
and
::3 3 3 3 和 F 2 11 f 2 11 11 -
and
::5,3,3,3,1 和5,5,3,3,1 -4 -
and
::5,4,6,9,f,21,0 和6,9,9
Identify the position vector for the midpoint of each line below. (You already found the vector equations in problems 1 through 4.)
::确定以下每一行中点的位置矢量。 (您已经在问题1至4中找到了矢量方程式)-
and
:第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第2款、第1款、第5款)
-
and
:2,-9)和(8,4)
-
and
:15,3)和(4,3)
-
and
:-1-1)和(3,11)
Use the vector equation to find the position of the object at t = 3s and t = 5s. (Distance is measured in meters.)
::使用矢量方程式在 t = 3s 和 t = 5s 找到对象的位置。 (差异以米计测量。 )-
An object has a position of
at t = 0 and a velocity of
::对象在 t = 0 时的方位为 si%3, ~ 5 , 速度为 v2, 7 。 -
An object has a position of
at t = 0 and a velocity of
::对象在 t = 0 时的方位为 si1,- 4,速度为 v9,- 7。 -
An object has a position of
at t = 0 and a velocity of
::对象在 t = 0 时的方位为 si1,2, 速度为 v3, - 1。
Review (Answers )
::回顾(答复)Please see the Appendix.
::请参看附录。 -
The
vector form of the equation of a line
is: