超双
Section outline
-
Introduction
::导言Hyperbolas can be oriented so they open side to side or up and down. How can we determine the direction of the opening of a hyperbola by the equation? Hyperbolas are relations that have asymptotes. When graphing rational functions, you often produce a hyperbola. In this concept, hyperbolas will not be oriented in the same way as with rational functions, but the basic shape of a hyperbola will still be there.
::Hyperbolas可以调整方向,让它们向上向上或向下开开来。我们如何用方程式来决定打开双倍波拉的方向? Hopbolas 是具有无等同元素的关系。在绘制理性函数图时,你常常产生双倍波拉。在这个概念中,双倍波拉不会以与理性函数相同的方式向上,但双倍波拉的基本形状仍然存在。The Hyperbola
::双波Recall that a hyperbola is generated when a plane intersects both nappes of the cone. As a result, a hyperbola has two foci . For every point on the hyperbola, the difference of the distances to each foci is constant.
::提醒注意当一平面交叉锥锥体的两个腺时会产生双波拉。 因此, 双波拉有两个角。 对于双波拉的每一点, 与每个角的距离是恒定的 。Standard Equation of a Hyperbola
::超重波体的标准方程式The graphing form of a hyperbola that opens side to side is
::向侧打开的双倍波拉的图形形式是
:x-h)2a2-(y-k)2b2=1,
where is the center of the hyperbola, is the semi-major axis , and is the semi-minor axis .
::其中 (h, k) 是超波拉的中心, a 是半主轴, b 是半最小轴 。A hyperbola that opens up and down is
::上上下上下打开的双波波拉
:y)(k)2a2-(x-h)2b2=1,其中(h,k)是超波拉的中心,a是半主轴,b是半最小轴。
Notice that for hyperbolas, goes with the positive term and goes with the negative term. It does not matter which constant is larger.
::请注意,对于超光子, 使用正值术语和 b 使用负值术语。 哪个恒定值更大并不重要 。
When graphing, the constants and enable you to draw a rectangle around the center. The transverse axis travels from vertex to vertex and has length . The conjugate axis travels perpendicular to the transverse axis through the center and has length . The foci lie beyond the vertices so the eccentricity, which is measured as , is larger than 1 for all hyperbolas. Hyperbolas also have two directrix lines that are away from the center (not shown on the image).
::当图形绘制时,常数 a 和 b 使您能够在中心周围绘制矩形。 横轴从顶部向顶部移动, 长度为 2a 。 共振轴通过中心垂直到横轴, 长度为 2b 。 顶部位于顶部之外, 因此以 e=ca 测量的偏心度大于 1 , 对所有双波las 来说, 超双波las 的偏心度大于 1 。 Hyperbolas 也有两条直径直线, 离中心有 A2c 距离( 未显示在图像上 ) 。The focal radius is given by where .
::焦半径由 a2+b2=c2 的 c 给出。The following video defines a hyperbola and explains how to graph a hyperbola given in standard form:
::以下视频定义了超重波拉,并解释了如何用标准格式绘制超重波拉图:
The following video explains how to graph a hyperbola in general form:
::以下影片解释如何用一般形式绘制双倍波拉图:Play, Learn, and Explore Hyperbolas:
::玩耍、学习和探索超双人游戏:Examples
::实例Example 1
::例1Put the following hyperbola into graphing form and sketch it:
::将以下双倍波拉放入图形形状和草图:
::9x2-4y2+36x-8y-4=0。Solution:
::解决方案 :
::9(x2+4x)-4(y2+2y)=49(x2+4x+4)-4(y2+2y+1)=4+36-49(x+2)-2-4(y+1)-2-4(y+1)=36(x+2)=36(x+2)24-(y+1)29=1Example 2
::例2Find the equation of the hyperbola with foci at (-3, 5) and (9, 5) and asymptotes with slopes of .
::查找超重波拉方位( 3, 5) 和( 9, 5) 的方位方位, 以及斜度为 +43 的单位方位方位 。Solution:
::解决方案 :The center is between the foci at (3, 5). The focal radius is . The slope of the asymptotes is always the rise over run inside the box. In this case, since the hyperbola is horizontal and is in the direction, the slope is . This makes a system of equations.
::中心位于( 3, 5 ) 的角之间, 焦半径为 c=6 。 小微粒的斜度总是在框内运行的上升。 在这种情况下, 由于双倍波拉是水平的, a 是向 x 方向的, 斜度是 ba 。 这就形成了一个方程系统 。
::巴瓦43a2+b2=62When you solve, you get .
::解决后,将获得a=3.6和b=4.8。
:x-3)232425-(y-5)257625=1
Example 3
::例3Find the equation of the conic that has a focus point at (1, 2), a directrix at , and an eccentricity equal to . Use the property that the distance from a point on the hyperbola to the focus is equal to the eccentricity times the distance from that same point to the directrix:
::找到在(1, 2) 有焦点点的二次曲线的方程式、 x=5 的直线和等于 32. 的偏心度。 使用以下属性: 从超博拉点到焦点点的距离等于从同一点到直线点的偏心度乘数: PF = ePD 。 解决方案 :This relationship bridges the gap between , which have eccentricity less than 1, and hyperbolas, which have eccentricity greater than 1. When eccentricity is equal to 1, the shape is a parabola .
::这种关系弥合了偏心度小于1的偏心度与偏心度大于1的超陈代谢值之间的差距。 当偏心度等于1时,形状即为抛物线。
:x-1)2+(y-2)2=32(x-5)2
Square both sides and rearrange terms so that it becomes a hyperbola in graphing form.
::方形两侧和重新排列的词义,以图示形式使它变成双波形。
::x2 - 2x+1+1+(y-2-2)2=94(x2-10x+25)2=94(x2-10x+25)2x2x-2-2-2x-2-2x-2-942-942-904x-2254+(y-2)2=042x-8x+8x+4-9x2-9x2-90x2+90x2-9x2-9x2+9x2-90x2-90x2+9x2-2-90x2x2=0-5x2+822x-2211+4(y2-2)2=0-5(x2+825xx-1825x+168252525)+4-155(x+415)2-57652525(x+4-156-5(y-244=1)Example 4
::例4Recall the problem from the Introduction: How can we determine the direction of the opening of a hyperbola by the equation?
::回顾导言中的问题:我们如何用方程式确定超重波拉打开的方向?Solution:
::解决方案 :Consider the hyperbola . This hyperbola opens side to side because can never be equal to zero. This example demonstrates that when the coefficient of the value is negative, the hyperbola opens up side to side.
::考虑超bola x2- y2= 1 。 此超bola 打开侧面, 因为 x 永远不能等于 0。 此示例显示, 当 y 值的系数为负时, 超bola 打开侧面 。Example 5
::例5Identify the shape, center, foci, vertices, equations of asymptotes, and equations of directrices of the following conic:
::识别以下二次曲线的形状、中位、角、角、脊椎、小微粒方程式和直线方程式:
::9x2 - 16y2 - 18x+96y+9=0。Solution:
::解决方案 :
::9x2-16y2-18x+96y+9=0
::9(x2-2x)-16(y2-6y) 99(x2-2x+1)-16(y2-6y+9) 9+9-1449(x-1) 2-16(y-3) 2-144-(x-1) 216+(y-3)29=1Shape: Hyperbola that opens vertically
::形状:垂直打开的超博拉Center: (1, 3)
::中心1,3)
::a=3 =3
::b=4 =4
::c=5 个
::e=ca=53
::d=a2c=95 =95Foci: (1, 8), (1, -2)
::实任1,8),(1,2)
Vertices: (1, 6), (1, 0)
::顶点1,6),(1,0)
Equations of asymptotes:
::微粒量的等同度x-1) 34(y-3)
Note that it is easiest to write the equations of the asymptotes in point-slope form using the center and the slope.
::请注意,使用中间和斜坡以点窗体形式以点窗体写出小数方程是最容易的。Equations of directrices:
::电流平方:y=395Example 6
::例6Given the graph below, estimate the equation of the conic.
::根据下图,估计二次曲线的方程。Solution:
::解决方案 :Since exact points are not marked, you will need to estimate the slope of asymptotes to get an approximation for and . The slope seems to be about . The center seems to be at (-1, -2). The transverse axis is 6, which means .
::由于未标出精确点, 您需要估计小行星的斜度, 才能得出 a 和 b 的近似值。 斜度似乎是 + 23 。 中心似乎在 (-1 - 2) , 横轴是 6 , 这意味着 a= 3 。
:x+1)29-(y+2)24=1
Example 7
::例7Find the equation of the hyperbola that has foci at (13, 5) and (-17, 5), with asymptote slopes of
::查找具有福子值(13,5)和(17,5)的超重波拉的方程,以微量斜度为 +34。Solution:
::解决方案 :The center of the conic must be at (-2, 5). The focal radius is . The slopes of the asymptotes are .
::二次曲线的中心必须位于 (-2, 5) 。 焦半径为 c=15。 小行星的斜度为 34 =ba 。
::a2+b2=c2 = c2 =Since 3, 4, 5 is a well-known Pythagorean triple, it should be clear to you that
::3,4,4,5是众所周知的毕达哥林三联赛, 你应该清楚,a=12,b=9。.
:x+2)2122-2(y-5)292=1。
Summary
::摘要-
A hyperbola is the collection of points that share a constant difference between the distances between two focus points.
::双倍波拉是收集在两个焦点点之间的距离之间始终存在差异的点数。 -
Eccentricity
is the ratio between the length of the focal radius and the length of the semi-transverse axis. For hyperbolas, the eccentricity is greater than 1.
::偏心度是焦半径长度与半反向轴长度之比。对于超光子,偏心度大于1。 -
The graphing form of a hyperbola that opens side to side is
::向侧打开的双倍波拉的图形形式是.
:x-h)2a2-(y-k)2b2=1。
::向侧打开的双倍波拉的图形形式是 (x-h) 2a2 - (y-k) 2b2=1 。 -
The graphing form of a hyperbola that opens up and down is
::向上和向下打开的超双波拉的图示形式是.
:y-k)2a2-(x-h)2b2=1。
::向上和向下打开的双倍波拉的图形形式是 (y-k) 2a2 - (x-h) 2b2=1。
Review
::回顾Use the following equation for 1-5:
::1-5使用以下方程式: x2+2x-4y2-24y-51=0。1. Put the hyperbola into graphing form. Explain how you know it is a hyperbola.
::1. 将双波拉放入图形形式,解释你如何知道它是双波拉。2. Identify whether the hyperbola opens side to side or up and down.
::2. 确定超重波拉是向侧还是向上或向下打开。3. Find the location of the vertices.
::3. 找到顶点的位置。4. Find the equations of the asymptotes.
::4. 寻找小行星的方程。5. Sketch the hyperbola.
::5. 伸展双倍波拉。
Use the following equation for 6-10:
::6-10时使用以下方程式:-9x2-36x+16y2-32y-164=0。6. Put the hyperbola into graphing form. Explain how you know it is a hyperbola.
::6. 将双波拉放入图形形式,解释你如何知道它是双波拉。7. Identify whether the hyperbola opens side to side or up and down.
::7. 确定超重波拉是向侧还是向上或向下打开。8. Find the location of the vertices.
::8. 寻找顶峰的位置。9. Find the equations of the asymptotes.
::9. 寻找小行星的方程。10. Sketch the hyperbola.
::10. 涂抹双倍波拉。
Use the following equation for 11-15:
::11-15 使用以下方程式: x2-6x-9y2-54y-81=0。11. Put the hyperbola into graphing form. Explain how you know it is a hyperbola.
::11. 将双波拉放入图形形式,解释你如何知道它是双波拉。12. Identify whether the hyperbola opens side to side or up and down.
::12. 确定超重波拉是向上向上向下打开侧侧还是向上向上向下打开。13. Find the location of the vertices.
::13. 寻找顶峰的位置。14. Find the equations of the asymptotes.
::14. 寻找小行星的方程。15. Sketch the hyperbola.
::15. 涂抹双倍波拉。Review (Answers)
::回顾(答复)Please see the Appendix.
::请参看附录。 -
A hyperbola is the collection of points that share a constant difference between the distances between two focus points.