Section outline

  • Introduction
    ::导言

    Finding limits for the vast majority of points for a given function is as simple as substituting the number that  x approaches into the function. Since this turns evaluating limits into an algebra-level substitution, most questions involving limits focus on the cases where substituting does not work.
    ::特定函数绝大多数点的查找限制与替换x进函数的数值一样简单,因为这将评价限制转换成代数级替代,大多数涉及限制的问题都集中在替换无效的情况下。

    Suppose a painter working 100 feet above the ground drops his paint brush to the street. The velocity of the paint brush in feet per second at t = 2  is given by the following limit:
    ::假设一个在地面上工作100英尺的画家将油漆刷落到街上。

    v ( t ) = lim t 2 16 t 2 + 64 t 2 .
         
    ::v(t) =limt2 - 16t2+64t-2。

    Determine the velocity of the paint brush at   t = 2  given by the limit  analytically .  
    ::以分析方式确定以 t=2 表示的画刷速度。

    lesson content

    Using Substitution to Find Limits
    ::使用替代以查找限制

    A 3rd approach to finding a limit is analytically using substitution. Finding a limit analytically means using algebraic approaches to find the limit.
    ::找到限制的第三种方法是在分析上使用替代方法,在分析上找到限制,在分析上找到使用代数法找到限制的方法。

    If the function  f ( x ) has no holes or an asymptote at  x = a , then the limit of the function is equal to the function value.  
    ::如果函数 f( x) 在 x=a 上没有空洞或小数,则函数的极限等于函数值。

    lim x a f ( x ) = f ( a )

    ::limxaf(x) = f(a)

    Thus, you can substitute the value that  x approaches into the function and evaluate the result. This approach works perfectly when there are no holes or asymptotes at that particular  x -value, and you do not divide by zero when substituting .
    ::因此,您可以替换 x 进入函数的值, 并评价结果。 当该 x 值没有空洞或零位时, 此方法会完全有效, 而替换时不会除以零 。

    However, occasionally there will be a hole or asymptote at x = a . If the function is a rational expression with a hole, then algebraically factor the numerator and denominator. Next, cancel any common factors in the numerator and denominator. Finally, substitute the value that  x approaches into the resulting expression. Thus, t he limit in this case is the function value as if the hole did not exist. 
    ::但是,在 x=a 时,偶尔会出现一个洞或零星。如果函数是带有洞的合理表达式,那么代数因素将乘以分子和分母。接下来,取消分子和分母中的任何共同系数。最后,将xaproache 的值替换为生成的表达式。因此,此情况下的限值是函数值,就像空洞不存在一样。

    If no factors can be canceled or the function has an asymptote, the limit likely does not exist at that point. Try another approach to confirm this conclusion. 
    ::如果无法取消任何因素, 或函数没有时点, 此时可能不存在限制 。 请尝试另一种方法来确认此结论 。

    An example of this approach can be seen in the following video:
    ::如下视频中可以看到这一方法的一个实例:

     

    Play, Learn, and Explore to Determine Limits: 
    ::游戏、学习和探索以确定限制 :

    Examples
    ::实例

    Example 1
    ::例1

    Which of the limits below can you determine using direct substitution? Find that limit.
    ::使用直接替代,您能确定下限的哪个?

    lim x 2 x 2 4 x 2 ,   lim x 3 x 2 4 x 2

    ::2x2 -4x-2, limx3x2 -4x-2, limx3x2 - 4x-2

    Solution:
    ::解决方案 :

    The limit on the right can be evaluated using direct substitution. The rational expression on the left has a hole at  x = 2 , so it would need to be simplified first. 
    ::右侧的限值可以通过直接替换来评估。 左侧的理性表达式在 x=2 上有一个洞, 因此它需要先简化 。

    lim x 3 x 2 4 x 2 = 3 2 4 3 2 = 9 4 1 = 5

    ::3x2-4x-2=32-43-2=9-41=5

    Example 2
    ::例2

    Evaluate the following limit analytically:
    ::以分析方式评估以下范围:

    lim x 2 x 2 4 x 2 .

    ::立方公尺2x2 -4x-2。

    Solution: 
    ::解决方案 :

    lim x 2 x 2 4 x 2 = lim x 2 ( x 2 ) ( x + 2 ) ( x 2 ) = lim x 2 ( x + 2 ) = 2 + 2 = 4

    ::2x2x2-4x-2=limx2x2x-2(x+2)(x+2)(x-2)(x-2)=limx2x+2=2+2=2+2=4

    Example 3
    ::例3

    Evaluate the following limit analytically: 
    ::以分析方式评估以下范围:

    lim x 4 x 2 x 12 x 4 .

    ::4x2 -x -12x -4。

    Solution:
    ::解决方案 :

    lim x 4 x 2 x 12 x 4 = lim x 4 ( x 4 ) ( x + 3 ) ( x 4 ) = lim x 4 ( x + 3 ) = 4 + 3 = 7

    ::立方公尺xxx4x2-x-12x-4=limx4x4(x-4)(x+3)(x-4)=limx4(x+3)=4+3=7

    Example 4
    ::例4

    Recall the question from the Introduction: A painter working 100 feet above the ground drops his paint brush to the street. The velocity of the paint brush in feet per second at  t = 2  is given by the following limit:
    ::回顾导言中的问题:在地上100英尺处工作的画家将油漆刷子扔到街上。

    v ( t ) = lim t 2 16 t 2 + 64 t 2 .

    ::v(t) =limt2 - 16t2+64t-2。

    Determine the velocity of the paint brush at   t = 2  given by the limit analytically.    
    ::以分析方式确定以 t=2 表示的画刷速度。

    Solution:
    ::解决方案 :

    v ( 2 ) = lim t 2 16 t 2 + 64 t 2 = lim t 2 16 ( t 2 4 ) t 2 = lim t 2 16 ( t 2 ) ( t + 2 ) t 2 = lim t 2 16 ( t + 2 ) = 64  ft/s
     
    :sad2) = limt%2 - 16t2+64t-2=limt%2 - 16(t2- 4)t-2=limt%2 - 16(t-2)(t+2)(t+2)t-2-2=limt%2 - 16(t+2)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Example 5
    ::例5

    Evaluate the following limit analytically:
    ::以分析方式评估以下范围:

    lim x 3 x 2 9 x 3 .

    ::立方厘米3x2-9x-3。

    Solution:
    ::解决方案 :

    lim x 3 x 2 9 x 3 = lim x 3 ( x 3 ) ( x + 3 ) ( x 3 ) = lim x 3   ( x + 3 ) = 6

    ::立方厘米x3x2-9x-3=立方厘米x3-3(x-3)(x+3)(x-3)(x-3)=立方厘米x3(x+3)=6

    Example 6
    ::例6

    Evaluate the following limit analytically:
    ::以分析方式评估以下范围:

    lim t 4 t + 32 .

    ::limt4t+32.

    Solution:
    ::解决方案 :

    lim t 4 t + 32 = 4 + 32 = 36 = 6

    ::limt4t+32=4+32=36=6

    Example 7
    ::例7

    Evaluate the following limit analytically:
    ::以分析方式评估以下范围:

    lim y 4 3 | y 1 | y + 4 .

    ::-43 yy -1 y+4。

    Solution:
    ::解决方案 :

     

    lim y 4 3 | y 1 | y + 4 = 3 | 4 1 | 4 + 4 = 3 3 8 = 9 8

    ::=34 -14+4=34 -14+4=338=98

    Summary
    ::摘要

    • Substitution is a method of determining limits where the value that  x is approaching is substituted into the function and the result is evaluated. 
      ::替代是一种确定限度的方法,用以将x接近值替换为函数,并对结果进行评价。
    • If the function  f ( x ) has no holes or asymptote at  x = a , then  lim x a f ( x ) = f ( a ) .
      ::如果函数 f( x) 在 x=a 时没有孔或无音效, 然后是 limx+*af( x) = f( a) 。
    • If the function is a rational expression with a hole, then algebraically factor the numerator and denominator. Next, cancel any common factors in the numerator and denominator. Finally, substitute  the value that  x  approaches into the  resulting expression. 
      ::如果函数是带有洞的合理表达式,则代数因素为分子和分母。接下来,取消分子和分母中的任何共同系数。最后,将x对结果表达式的数值替换为X。
    • If no factors can be canceled or the function has an asymptote, the limit likely does not exist at that point. Try another approach to confirm this conclusion. 
      ::如果无法取消任何因素, 或函数没有时点, 此时可能不存在限制 。 请尝试另一种方法来确认此结论 。

    Review
    ::回顾

    Evaluate the following limits analytically:
    ::分析评价以下限度:

    1. lim x 5 x 2 25 x 5
    ::1. limx=5x2-2-25x-5

    2. lim x 1 x 2 3 x 4 x + 1
    ::2. limx%1x2-3x-4x+1

    3. lim x 5 5 x 12
    ::3. limx55x-12

    4. lim x 0 x 3 + 3 x 2 x 5 x
    ::4. limx=0x3+3x2-x5x

    5. lim x 1 3 x | x 4 | x + 1
    ::5. 立方公尺13xx-4x+1

    6. lim x 2 x 2 + 5 x 14 x 2
    ::6. limx%2x2+5x-14x-2

    7. lim x 1 x 2 8 x + 7 x 1
    ::7. limx=1x2-8x+7x-1

    8. lim x 0 5 x 1 2 x 2 + 3
    ::8. limx05x-12x2+3

    9. lim x 1 4 x 2 2 x + 5
    ::9. limx}14x2-2x+5

    10. lim x 0 x 2 + 5 x x
    ::10. limx=0x2+5xxx

    11. lim x 3 x 2 9 x + 3
    ::11. limx=%3x2-9x+3

    12. lim x 0 5 x + 1 x
    ::12. limx05x+1x

    13. lim x 1 5 x + 1 x
    ::13. limx=15x+1x

    14. lim x 5 x 2 25 x 3 125
    ::14. 立方×5x2-2-25x3-125

    15. lim x 1 x 2 x + 1
    ::15. limx%1x-2x+1

    Review (Answers )
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。