替代查找限额
Section outline
-
Introduction
::导言Finding limits for the vast majority of points for a given function is as simple as substituting the number that approaches into the function. Since this turns evaluating limits into an algebra-level substitution, most questions involving limits focus on the cases where substituting does not work.
::特定函数绝大多数点的查找限制与替换x进函数的数值一样简单,因为这将评价限制转换成代数级替代,大多数涉及限制的问题都集中在替换无效的情况下。Suppose a painter working 100 feet above the ground drops his paint brush to the street. The velocity of the paint brush in feet per second at
::假设一个在地面上工作100英尺的画家将油漆刷落到街上。
::v(t) =limt2 - 16t2+64t-2。Determine the velocity of the paint brush at
::以分析方式确定以 t=2 表示的画刷速度。Using Substitution to Find Limits
::使用替代以查找限制A 3rd approach to finding a limit is analytically using substitution. Finding a limit analytically means using algebraic approaches to find the limit.
::找到限制的第三种方法是在分析上使用替代方法,在分析上找到限制,在分析上找到使用代数法找到限制的方法。If the function has no holes or an asymptote at , then the limit of the function is equal to the function value.
::如果函数 f( x) 在 x=a 上没有空洞或小数,则函数的极限等于函数值。
::limxaf(x) = f(a)Thus, you can substitute the value that approaches into the function and evaluate the result. This approach works perfectly when there are no holes or asymptotes at that particular -value, and you do not divide by zero when substituting .
::因此,您可以替换 x 进入函数的值, 并评价结果。 当该 x 值没有空洞或零位时, 此方法会完全有效, 而替换时不会除以零 。However, occasionally there will be a hole or asymptote at . If the function is a rational expression with a hole, then algebraically factor the numerator and denominator. Next, cancel any common factors in the numerator and denominator. Finally, substitute the value that approaches into the resulting expression. Thus, t he limit in this case is the function value as if the hole did not exist.
::但是,在 x=a 时,偶尔会出现一个洞或零星。如果函数是带有洞的合理表达式,那么代数因素将乘以分子和分母。接下来,取消分子和分母中的任何共同系数。最后,将xaproache 的值替换为生成的表达式。因此,此情况下的限值是函数值,就像空洞不存在一样。If no factors can be canceled or the function has an asymptote, the limit likely does not exist at that point. Try another approach to confirm this conclusion.
::如果无法取消任何因素, 或函数没有时点, 此时可能不存在限制 。 请尝试另一种方法来确认此结论 。An example of this approach can be seen in the following video:
::如下视频中可以看到这一方法的一个实例:Play, Learn, and Explore to Determine Limits:
::游戏、学习和探索以确定限制 :Examples
::实例Example 1
::例1Which of the limits below can you determine using direct substitution? Find that limit.
::使用直接替代,您能确定下限的哪个?
::2x2 -4x-2, limx3x2 -4x-2, limx3x2 - 4x-2Solution:
::解决方案 :The limit on the right can be evaluated using direct substitution. The rational expression on the left has a hole at , so it would need to be simplified first.
::右侧的限值可以通过直接替换来评估。 左侧的理性表达式在 x=2 上有一个洞, 因此它需要先简化 。
::3x2-4x-2=32-43-2=9-41=5Example 2
::例2Evaluate the following limit analytically:
::以分析方式评估以下范围:
::立方公尺2x2 -4x-2。Solution:
::解决方案 :
::2x2x2-4x-2=limx2x2x-2(x+2)(x+2)(x-2)(x-2)=limx2x+2=2+2=2+2=4Example 3
::例3Evaluate the following limit analytically:
::以分析方式评估以下范围:
::4x2 -x -12x -4。Solution:
::解决方案 :
::立方公尺xxx4x2-x-12x-4=limx4x4(x-4)(x+3)(x-4)=limx4(x+3)=4+3=7Example 4
::例4Recall the question from the Introduction: A painter working 100 feet above the ground drops his paint brush to the street. The velocity of the paint brush in feet per second at
::回顾导言中的问题:在地上100英尺处工作的画家将油漆刷子扔到街上。
::v(t) =limt2 - 16t2+64t-2。Determine the velocity of the paint brush at
::以分析方式确定以 t=2 表示的画刷速度。Solution:
::解决方案 :
:2) = limt%2 - 16t2+64t-2=limt%2 - 16(t2- 4)t-2=limt%2 - 16(t-2)(t+2)(t+2)t-2-2=limt%2 - 16(t+2)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
Example 5
::例5Evaluate the following limit analytically:
::以分析方式评估以下范围:
::立方厘米3x2-9x-3。Solution:
::解决方案 :
::立方厘米x3x2-9x-3=立方厘米x3-3(x-3)(x+3)(x-3)(x-3)=立方厘米x3(x+3)=6Example 6
::例6Evaluate the following limit analytically:
::以分析方式评估以下范围:
::limt4t+32.Solution:
::解决方案 :
::limt4t+32=4+32=36=6Example 7
::例7Evaluate the following limit analytically:
::以分析方式评估以下范围:
::-43 yy -1 y+4。Solution:
::解决方案 :
::=34 -14+4=34 -14+4=338=98Summary
::摘要-
Substitution
is a method of determining limits where the value that
is approaching is substituted into the function and the result is evaluated.
::替代是一种确定限度的方法,用以将x接近值替换为函数,并对结果进行评价。 -
If the function
has no holes or asymptote at
, then
.
::如果函数 f( x) 在 x=a 时没有孔或无音效, 然后是 limx+*af( x) = f( a) 。 -
If the function is a rational expression with a hole, then algebraically factor the numerator and denominator. Next, cancel any common factors in the numerator and denominator. Finally, substitute
the value that
approaches into the
resulting expression.
::如果函数是带有洞的合理表达式,则代数因素为分子和分母。接下来,取消分子和分母中的任何共同系数。最后,将x对结果表达式的数值替换为X。 -
If no factors can be canceled or the function has an asymptote, the limit likely does not exist at that point. Try another approach to confirm this conclusion.
::如果无法取消任何因素, 或函数没有时点, 此时可能不存在限制 。 请尝试另一种方法来确认此结论 。
Review
::回顾Evaluate the following limits analytically:
::分析评价以下限度:1.
::1. limx=5x2-2-25x-52.
::2. limx%1x2-3x-4x+13.
::3. limx55x-124.
::4. limx=0x3+3x2-x5x5.
::5. 立方公尺13xx-4x+16.
::6. limx%2x2+5x-14x-27.
::7. limx=1x2-8x+7x-18.
::8. limx05x-12x2+39.
::9. limx}14x2-2x+510.
::10. limx=0x2+5xxx11.
::11. limx=%3x2-9x+312.
::12. limx05x+1x13.
::13. limx=15x+1x14.
::14. 立方×5x2-2-25x3-12515.
::15. limx%1x-2x+1Review (Answers )
::回顾(答复)Please see the Appendix.
::请参看附录。 -
Substitution
is a method of determining limits where the value that
is approaching is substituted into the function and the result is evaluated.