答案 - Ch 15: 微积分预览
章节大纲
-
Section 15.2: Limit Notation
::第15.2节:限制说明-
lim
x
→
∞
2
x
4
+
4
x
2
−
1
5
x
4
+
3
x
+
9
=
lim
x
→
-
∞
2
x
4
+
4
x
2
−
1
5
x
4
+
3
x
+
9
=
2
5
::立方公尺xx2x4+4x2-15x4+3x3x+9=limx%-2x4+4x2-15x4+3x9=25 -
lim
x
→
∞
8
x
3
+
4
x
2
−
1
2
x
3
+
4
x
+
7
=
lim
x
→
-
∞
8
x
3
+
4
x
2
−
1
2
x
3
+
4
x
+
7
=
4
::8x3+4x2 - 12x3+4x+7=limx}=========================================================================================================================================================================================================================================================================================================================================================================================================================================== = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = -
lim
x
→
∞
x
2
+
2
x
3
−
3
5
x
3
+
x
+
4
=
lim
x
→
-
∞
x
2
+
2
x
3
−
3
5
x
3
+
x
+
4
=
2
5
::limxxx2+2x3 - 35x3+4=limx}==25=limx}=x2+2x3+353+x4=25 -
lim
x
→
∞
4
x
+
4
x
2
−
5
2
x
2
+
3
x
+
3
=
lim
x
→
-
∞
4
x
+
4
x
2
−
5
2
x
2
+
3
x
+
3
=
2
::立方公尺=2 -
lim
x
→
∞
3
x
2
+
4
x
3
+
4
6
x
3
+
3
x
2
+
6
=
lim
x
→
-
∞
3
x
2
+
4
x
3
+
4
6
x
3
+
3
x
2
+
6
=
2
3
::立方英寸3x2+4x3+46x3+3x2+6=limx}============================================================================================================================================================================================================================== -
lim
x
→
3
2
x
2
+
1
=
19
::limx% 32x2+1=19 -
lim
x
→
-
∞
e
x
=
0
::立方公尺=0 -
lim
x
→
∞
1
x
=
0
::limx1x=0 -
lim
n
→
∞
n
∑
i
=
1
(
1
4
)
i
=
1
3
::立方厘米=1( 14) 立方公尺=13 -
lim
n
→
∞
n
∑
i
=
1
1
i
does not exist
::limnni=11i 不存在 -
lim
n
→
∞
n
∑
i
=
0
(
1
2
)
i
=
2
::立方公尺=0( 12) i=2 -
lim
n
→
∞
n
∑
i
=
1
9
10
i
=
1
::立方公尺=1910i=1 -
The limit of
f
(
x
)
=
5
x
2
−
4
x
+
1
as
x
approaches 0 is -4.
::f(x) = 5x2-4x+1 的限值,作为 x local 0 是 - 4 。 -
The limit of
y
=
x
3
−
1
x
−
1
as
x
approaches 1 is 3.
::y=x3 - 1x-1 的极限值为 x 方法1 x 的极限值为 3 。 -
Yes, it's possible as long as
a
does not equal positive or negative infinity. Number 6 is an example of this.
::是的,只要不等于正或负的无限度,这是可能的。6号就是一个例子。
Section 15.3: Graphs to Find Limits
::第15.3节:确定限额的图表-
lim
x
→
-
∞
f
(
x
)
=
0
::limx-f(x)=0 -
lim
x
→
∞
f
(
x
)
=
D
N
E
::limxf(x) = DNE -
lim
x
→
2
f
(
x
)
=
D
N
E
::limx%2f(x) = DNE -
lim
x
→
0
f
(
x
)
=
1
::limx0f(x)=1 -
f
(
0
)
=
2
::f(0)=2 -
f
(
2
)
=
6
::f(2)=6 -
lim
x
→
-
∞
g
(
x
)
=
D
N
E
::limx-g(x) = DNE -
lim
x
→
∞
g
(
x
)
=
1
::limxg( x)=1 -
lim
x
→
2
g
(
x
)
=
-
2
::limx%2g(x)=-2 -
lim
x
→
0
g
(
x
)
=
D
N
E
::limx0g(x) = DNE -
lim
x
→
4
g
(
x
)
=
0
::limx4g(x)=0 -
g
(
0
)
=
2
::g( 0)=2 -
g
(
2
)
=
4
::g(2)=4 -
Answers vary.
::答案不尽相同。 -
Answers vary.
::答案不尽相同。
Section 15.4: Tables to Find Limits
::第15.4节:确定限额的表格- 10
- -5
-
DNE
::DNN DN DN - 1 2 √ 2 ≈ 0.35355
-
DNE
::DNN DN DN - 9
- -6
- 1 2 √ 5 ≈ 0.2236
- 1 6
- 5
- -6
- 1 4
- 1 4
- 2 15
-
DNE
::DNN DN DN
Section 15.5: Substitution to Find Limits
::第15.5节:用以确定限额的替代- 10
- -5
- -7
- - 1 5
- 3
- 9
- -6
- - 1 3
- 7
- 5
- -6
-
DNE
::DNN DN DN - 6
- 2 15
-
DNE
::DNN DN DN
Section 15.6: Rationalization to Find Limits
::第15.6节:寻找限制的合理化- 1 6
- 1 4
- 1 4
- 1 2 √ 3
- 5 8
- - 1 4
- 1 2 √ 7
- 8
- 4 √ 3
- 1 6
- 1 2
- 2
- 64
- -144
-
If the function is a rational expression with a square root somewhere, there is a good chance that rationalizing will help you to evaluate the limit.
::如果函数是某处带有平方根的合理表达式,那么理顺很有可能有助于您评估极限值。
Section 15.7: Continuity
::第15.7节:连续性- 1
- 1
-
Yes
::是 是 - 11
- 11
-
No, because
g
(
-
2
)
≠
11
.
::不,因为g(-2)\\\\\\\\\\\\\\\\\\\\\\\\\\ - -3
- -3
- -2
-
No, because
h
(
0
)
≠
-
3
::否,因为 h(0) {________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ -
Answers vary. Any continuous interval that does not include 0 should work.
::答复各有不同。任何连续间隔,如果不包括0,应该有效。 -
Answers vary. Possible answer: [-1, 1].
::答复不尽相同,可能的答复是[-1,1]。 -
Since
lim
x
→
-
2
−
3
x
+
1
=
-
5
and
lim
x
→
-
2
+
-
2
x
−
1
=
3
,
there is no value of
k
that makes the function continuous.
::由于 limx-2-3x+1=-5 和 limx-2+-2x-1=3, k 没有值使函数持续。 - 1
- -3
Section 15.8: Intermediate and Extreme Value Theorems
::第15.8节:中间和极端价值理论-
f
(
-
1
)
=
cos
(
-
1
)
−
1
=
-
0.4596
and
f
(
1
)
=
cos
(
1
)
+
1
=
1.54
;
therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
0.4596
<
0
<
1.54
.
::f(-1)=cos(-1)-1=-0.4596和f(1)=cos(1)+1=1.54;因此,必须存在f(c)=0的c,因为 -0.4596 <0<1.54。 -
f
(
1
)
=
l
n
(
1
)
−
e
-
1
−
1
=
-
1.37
and
f
(
3
)
=
l
n
(
3
)
−
e
-
3
−
1
=
0.4883
;
therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
1.37
<
0
<
0.4883
.
::f(1)=ln(1)-e-1-1=-1.37和f(3)=ln(3)-e-3-1=0.4883;因此,必须存在f(c)=0的c,因为-1.37 <0.4883。 -
f
(
1
)
=
2
(
1
)
3
−
5
(
1
)
2
−
10
(
1
)
+
5
=
-
8
and
f
(
0
)
=
2
(
0
)
3
−
5
(
0
)
2
−
10
(
0
)
+
5
=
5
;
therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
8
<
0
<
5
.
::f(1)=2(1)3-5(1)-2-10(1)+5=8和f(0)=2(0)3-5(0)2-10(0)+5=5;因此,必须存在f(c)=0,因为 -8 <0 <5) -
f
(
x
)
=
x
3
−
x
−
1
.
f
(
0
)
=
-
1
and
f
(
2
)
=
5
; therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
1
<
0
<
5
.
::f( x) =x3- x- 1. f( 0) =-1 和 f(2)= 5; 因此, 必须存在这样的 c, 因为 - 1 < 0 < 5 , f( c) = 0 。 -
f
(
-
2
)
=
(
-
2
)
2
−
cos
(
-
2
)
=
4.4
and
f
(
0
)
=
(
0
)
2
−
cos
(
0
)
=
-
1
;
therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
1
<
0
<
4.4
.
::f( 2) = ( 2) 2 - cos( 2) = 4. 4 和 f( 0) = ( 0) 2 - cos( 0) =-1; 因此, 一定存在 f( c) = 0 因为 - 1 < 0 < 4. 4 。 -
f
(
x
)
=
x
5
−
2
x
3
−
2
.
f
(
1
)
=
-
3
and
f
(
2
)
=
14
; therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
3
<
0
<
14
.
::f(x) =x5-2x3-2. f(1)=-3 和 f(2)=14; 因此, 一定存在f(c)=0的 c, 因为 - 3 < 0 < 14 。 -
f
(
x
)
=
3
x
2
+
4
x
−
11
.
f
(
1
)
=
-
4
and
f
(
2
)
=
9
; therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
4
<
0
<
9
.
::f(x) = 3x2+4x- 11. f(1)= 4 和 f(2)= 9; 因此, 一定存在f(c)=0的 c, 因为 - 4 < 0 < 9 。 -
f
(
x
)
=
5
x
4
−
6
x
2
−
1
.
f
(
1
)
=
-
2
and
f
(
2
)
=
55
; therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
2
<
0
<
55
.
::f(x) = 5x4-6x2- 1. f(1)= 2 和 f(2)= 55; 因此, 必须存在 f(c) = 0 因为 - 2 < 0 < 55 。 -
f
(
x
)
=
7
x
3
−
18
x
2
−
4
x
+
1
.
f
(
-
1
)
=
-
20
and
f
(
0
)
=
1
; therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
20
<
0
<
1
.
::f( x) = 7x3- 18x2- 4x+1. f(-1) =-20 和 f( 0)=1; 因此, 必须有 f( c) =0 的 c , 因为 -20 < 0 < 1 。 -
f
(
1
)
=
1
3
and
f
(
2
)
=
-
1
;
therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
1
<
0
<
1
3
.
::f(1)=13和f(2)=1;因此,必须存在f(c)=0的c,因为 -1 <0 < 13。 -
f
(
-
1
)
=
-
1
and
f
(
0
)
=
1
4
;
therefore, there must exist a
c
such that
f
(
c
)
=
0
because
-
1
<
0
<
1
4
.
::f(-1) =-1 和 f( 0) = 14; 因此, 必须存在 f( c) = 0 因为 - 1 < 0 < 14 。 -
False
::假假 -
True
::真实 -
True
::真实 -
Functions must be continuous over given intervals in order for the theorems to apply.
::功能必须是连续的,间隔一定的时间间隔内才能适用定理。
Section 15.9: Instantaneous Rate of Change
::第15.9节:即时变化率-
The slope appears to be 2.
::斜坡似乎为2。 -
The limit is 2, which is the same as what the slope appeared to be in Number 1.
::限值是2, 与1号的斜坡相同。 -
The slope appears to be 6.
::斜坡似乎为6。 -
The limit is 6, which is the same as what the slope appeared to be in Number 3.
::限值是6, 与第3页的斜坡相同。 -
The slope appears to be 3.
::斜坡似乎为3。 -
The limit is 3, which is the same as what the slope appeared to be in Number 5.
::限值是3, 与5号山坡看起来相同。 -
The slope appears to be 6.
::斜坡似乎为6。 -
lim
x
→
1
(
2
x
3
−
1
−
1
x
−
1
)
::limx%1( 2x3 - 1 - 1 - 1x- 1) -
The slope at 0 is 0. The slope at
π
2
is -1. The slope at
π
is 0. The slope at
3
π
2
is 1. The slope at
2
π
is 0.
::0为0。% 2 的斜度为 - 1. = 0。% 2 的斜度为 1 。% 2 的斜度为 0 。% 2 的斜度为 1 。 -
The derivative of the cosine function is the negative sine function.
::余弦函数的衍生物是负正弦函数。 -
The slope is 2 at every point. The derivative of the function is
y
=
2
.
::每个点的斜坡为 2。 函数的衍生值为 Y= 2 。 -
Distance vs. Time
Rate vs. Time
::距离对时间率对时间 -
A tangent line is a line that "just touches" a curve. The slope of the tangent line at a given point is the derivative of the function at that point.
::正切线是“ 碰触” 曲线的线条。 相切线的斜度在给定点是函数在那个点的衍生物 。 -
Instantaneous rate of change is the speed at a given point. Speed is shown as slope in functions; therefore, the slope of the tangent line will be the speed or instantaneous rate of change at that point.
::瞬间变化速度是某一点的速度。速度以函数的斜度显示;因此,正切线的斜度将是该点的速率或瞬时变化速度。 -
We can't calculate a slope with a denominator of 0, but we can use limits to find the limit of the slope as the denominator approaches 0.
::我们无法计算一个分母为0的斜坡, 但我们可以用极限来找到斜坡的极限, 当分母接近0时。
Section 15.10: Area Under a Curve
::第15.10节:曲线下区域- 176
- 60
- 8.79
- 8.86
- -0.33
- -0.59
- -0.72
-
The car is going at a constant speed of 25 mph for 3 hours, and then instantly starts going 65 mph for the next 2 hours.
::汽车在3小时内以25英里的恒定速度行驶, 3个小时, 然后在接下来的2个小时里, 立即开始开往65英里的行驶。 -
205 miles
::205英里 -
The car accelerates steadily from 0 to 75 meters per second in the first 3 seconds, and then stays at 75 meters per second for the next 2 seconds.
::汽车在前3秒内从每秒0米稳步加速到75米,然后在接下来的2秒内停留在每秒75米。 -
262.5 feet
::262.5英尺 -
The runner increases in speed from 0 feet per second to 16 feet per second, then slows back down to 0 feet per second.
::跑者的速度从每秒0英尺增加到每秒16英尺,然后减慢到每秒0英尺。 -
The exact answer is
256
3
≈
85.33
.
::确切答案是256385.33。 -
Integrals are areas under a curve. They can be calculated by finding the sum of the areas of an infinite number of rectangles.
::元件是曲线下的区域,可以通过找到无数矩形的区域的总和来计算。
-
lim
x
→
∞
2
x
4
+
4
x
2
−
1
5
x
4
+
3
x
+
9
=
lim
x
→
-
∞
2
x
4
+
4
x
2
−
1
5
x
4
+
3
x
+
9
=
2
5