Section outline

  • Given a linear transformation of the form
    ::给定窗体的直线变换

    T ( x ) = A x  where  A  is a standard matrix
    ::T(x)=Ax,其中A为标准矩阵

    The domain of the transformation is the set of all inputs of the variable  x . So, for example, if  T  is a linear transformation 
    ::变换的域是变量 x 的所有输入的集合。例如,如果 T 是线性变换

    T : R n R m
    ::T:RnRm

    The set  R n  is the input space, or the domain of the linear transformation  T . So, let's look at an example of a linear transformation and try to find the domain.
    ::设置 Rn 是输入空间, 或者线性变换 T 的域 。 所以, 让我们看看线性变换的示例, 并试着找到域 。

    T : R 3 R 3 T ( [ x 1 x 2 x 3 ] ) = [ 3 1 2 0 2 1 1 2 0 ] [ x 1 x 2 x 3 ]
    ::T:R3QR3T([x1x2x3]) =[3-120-21-120][x1x2x3]

    And looking at this transformation we see that the input space has every vector in  R 3 .
    ::我们看到输入空间 含有R3中的每一个矢量

    Now, the codomain of a linear transformation is the space in which the linear transformation maps to.
    ::现在,线性变换的共域 就是线性变换映射到的空间。

    So, for example, taking
    ::例如,举例说,以

    T : R 2 R 3 T ( [ x 1 x 2 ] ) = [ 1 1 2 0 3 2 ] [ x 1 x 2 ]  
    ::T:R2R3T([x1x2]) =[1-1203-2] [x1x2]

    Here, we see that the domain of this linear transformation is  R 2  and the codomain of this matrix is  R 3  because that is the output space of this linear transformation as the resulting vector will be a vector in  R 3 .
    ::在这里,我们可以看到,这种线性变换的域是R2,而这个矩阵的共域是R3,因为这就是这种线性变换的输出空间,因为由此产生的矢量将是R3中的矢量。

    Now, the codomain of a linear transformation is different than the range of a linear transformation.
    ::现在,线性变换的共域与线性变换的范围不同。

    The range of a linear transformation is the set of all of the images of a linear transformation.
    ::线性变换的范围是线性变换的所有图像的集合。

    So, staying with the last example we looked at, we have that the codomain is the reals in 3 dimensions. However, the set of all of the images is
    ::所以,与我们所看到的最后一个例子一样, 我们发现, 共域是3维的真数。 然而, 所有图像的集是

    range ( T ) = { [ x 1 x 2 2 x 1 3 x 1 2 x 2 ] | [ x 1 x 2 ] R 2 }
    ::区域( T) [x1 - x22x13x1 - 2x2] [x1x2] R2}

    which is a subset of the codomain, however, it is not equal to that.
    ::这是共域的子集, 但是,它不等于它。

    Next, let's look at a couple examples and the diagrams of those examples:
    ::下面,让我们看看几个例子和这些例子的图表:

     

    Let  T : R 3 R 3 T ( x ) = A x A = [ 1 0 1 2 3 0 1 5 2 ] A x = [ 1 0 1 2 3 0 1 5 2 ] [ x 1 x 2 x 3 ]
    ::让 T: R3QR3T( x%) =AxIA = [10- 1230-152] Ax{[10- 1230-152] {[10- 1230-152] {[x1x2x3]

    The domain of this transformation is all of  R 3  and the entire output space of this linear transformation is  R 3 , so the codomain is the same set as the domain which is  R 3 .
    ::这种变换的域为R3, 线性变换的整个输出空间为R3, 因此共域与R3的域相同。

    Now, searching for the set of all images, or in other words, the range, we get that it is equal to 
    ::现在,搜索全部图像集, 换言之, 范围, 我们得到它等于

    Range ( T ( x ) ) = { [ x 1 x 3 2 x 1 + 3 x 2 1 x 1 + 5 x 2 + 2 x 3 ] | x 1 , x 2 , x 3 R [ x 1 x 2 x 3 ] R 3 }
    ::区域( T( x) ) [x1 - x32x1+3x2 - 1x1+5x2+2x3] x1,x2,x3}[x1x2x3] [x1x2x3] {R3}

    Due to technical constraints it will be harder to visualize this linear transformation, but let's try another example and try and apply our principles of domain, codomain and range.
    ::由于技术限制,很难想象这种线性转变, 但是让我们再试一个例子, 尝试运用我们的域、 共域和范围原则。

    Now, let 
    ::现在,让我们

    T : R 2 R 2 T ( x ) = A x A = [ 5 2 2 3 ] A x = [ 5 2 2 3 ] [ x 1 x 2 ]
    ::T:R2-R2T(x__)=Ax_A=[52-23]Ax[52-23]和[x1x2]

    From this, we see that the input and output space, domain and codomain, are both  R 2 .
    ::我们从中看到,输入和输出空间, 域和共同域, 既是R2,又是R2。

    Looking at this to find the range, we get that the range, or the set of all images of the transformations is
    ::或所有变换图像的集

    { [ 5 x 1 + 2 x 2 2 x 1 + 3 x 2 ] , x 1 , x 2 R }
    ::{5x1+2x2-2x1+3x2,x1,x2R}

    Looking at this visually, we see that this linear transformation transforms the space
    ::我们看到这种直线转换 改变了空间

    lesson content

     

    to end up getting
    ::最终得到