Section outline

  • When we discussed diagonalization we essentially taught ourselves how to factor matrices. In this lesson we are going to apply our knowledge of the Gram-Schmidt process and orthonormalization in order to factor matrices by another method, known as QR factorization.
    ::当我们讨论对等化时,我们基本上教自己如何计算矩阵。在这个教训中,我们将运用我们关于Gram-Schmidt过程和正正正化的知识,以便用另一种方法,即QR系数化来计算矩阵。


     

    Theorem: Given an  m × n  matrix  A  with linearly independent columns one can factor that matrix into the form  A = Q R  where  Q  is also an  m × n  matrix with columns which form an orthonormal basis for the column space of  A  and  R  is an  n × n  upper triangular matrix which is invertible and has positive entries on the diagonal.
    ::论理:如果有一个有线性独立的列的 mxn 矩阵A,那么可以将该矩阵纳入表AR,其中Q也是mxn 矩阵,其列构成A和R列空间的正正态基数,是 nxn 的上三角矩阵,不可逆,在对角有正条目。


     

    Try to prove this on your own using properties about orthogonal matrices and the Gram-Schmidt process. I will just run through  an example of this technique being used.
    ::尝试使用关于矩形矩阵的属性和 Gram-Schmidt 进程来证明这一点。 我将尝试一个使用这种技术的例子 。

    Example: Let  A = [ 1 0 0 1 1 0 1 1 1 1 1 1 ]
    ::示例:让我们A=[100110111111]

    Applying the Gram-Schmidt process to get an orthonormal basis for the column space of A, we get that
    ::应用 Gram- Schmidt 进程来获得 A 列空间的正正异常值, 我们知道

    Q = [ 1 2 3 12 0 1 2 1 12 2 6 1 2 1 12 1 6 1 2 1 12 1 6 ]
    ::[12-312012112-2612112161212161216]

     

    Now, we can solve for  R  taking  Q T A = Q T ( Q R ) = I R = R  because Q is an orthogonal matrix.
    ::现在,我们可以解决 R 使用 QTAT( QR) =IR=R 的问题, 因为 Q 是正对矩阵 。

    Then, we get that 
    ::然后,我们得到

    R = [ 1 2 1 2 1 2 1 2 3 12 1 12 1 12 1 12 0 2 6 1 6 1 6 ] [ 1 0 0 1 1 0 1 1 1 1 1 1 ] R = [ 2 3 2 1 0 3 12 2 12 0 0 2 6 ]  
    ::R=[121212121212-3121121212120-261616]][100111111]R=[232103122120026]

    Hence, we have found our Q and R.
    ::因此,我们找到了我们的Q和R。


    For more information look at these sources which will give you valuable insight on QR.
    ::欲了解更多信息,请查看这些来源,这些来源将为您提供关于QR的宝贵见解。