平根函数和方根等量
Section outline
-
The Purpose of this Lesson
::本课程的目的In this lesson, you will explore the square root function in the context of inverse relations. You'll graph transformed square root functions and solve .
::在此教训中, 您将在反向关系中探索平方根函数。 您将绘制正方根函数的变形图并解决 。Introduction: T he Inverse of the Quadratic F u nction
::导言:Quadratic 函数的反面Work it Out
::工作出来Graph the function Find the inverse. Solve it for Graph it. Graph the line Compare the inverse of with the original. What is the domain and range of the original? What is the domain and range of the inverse? What do you observe?
::函数 f( x) =x2 的图解。 查找反向 。 为 y 解决它。 绘制线条 y=x 。 比较 f( x) 与原始的反义 。 原始的域和范围是什么? 反向的域和范围是什么? 您观察了什么 ?
Activity 1 : The Square Root Function
::活动1: " 平根功能 "In the last problem, you saw that the equations and are inverse relations.
::在最后一个问题中,你看到 y=x2和y=x是反向关系。Example 1-1
::例1-1is not a function . Why not? is a function. How do you know? What is its domain and range?
::yx 不是函数。 为什么不? y=x是一个函数。 你怎么知道? 它的域和范围是什么?Solution: The graph of shows us that there is an infinite number of values that return more than one value. This doesn't meet our definition of a function. A function is a relation between two sets of numbers, the domain, and range, such that for each value in the domain there is only one value in the range. Substituting values for , or the vertical line test for the graph, show that does not meet the definition of a function.
::解析度 : yx 的图形向我们显示, 返回一个 y 值的 x 值是无限的。 这不符合我们对函数的定义。 函数是两组数字之间的关系, 即域和范围, 因此对于域内的每个 x 值来说, 区域里只有一个 y 值。 替换 x 的值, 或图形的垂直线测试, 显示 yx 不符合函数的定义 。The equation y = plus or minus the square root of x is not a function, but y = the square root of x is. Why?
::公式 y = + 或 减去 x 的平方根不是函数,而是 y = x 的平方根是。 为什么?By contrast, is a function. It passes the vertical line test. The domain for is The range is
::相对而言, Y=x 是一个函数。它通过垂直线测试。y=x 的域为 [0,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Y\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\The equation y = plus or minus the square root of x is not a function, but y = the square root of x is. Why? Interactive
::交互式互动We can transform the square root function using the same parameters that we used for quadratic functions. Use the interactive below to investigate how and affect the square root function
::我们可以使用用于二次函数的相同参数来转换平方根函数。 使用下面的交互功能来调查a、 h和 k如何影响平方根函数 y=x 。+Do you want to reset the PLIX?Work it Out
::工作出来Transform the square root function according to each set of instructions below. Call the result after each transformation Write the equation for each result. Sketch the graph of each. Give the domain and range of each. Based on the graph, state if the equation has a solution, and why or why not. Do not solve the equation.
::根函数 f( x) =x 根据以下每组指令进行转换。 在每次转换 h( x) 后调出结果。 写入每个结果的方程。 绘制每个结果的图形。 给出每个结果的域和范围。 根据图形, 显示公式 h( x) =2 是否有解决方案, 以及为什么或为什么没有。 请不要解析方程 。-
Shift
5
vertically
.
::垂直移动 5 。 -
Shift 3
horizontally
.
::水平上移移移 3 。 -
Shift 5 vertically and 3 horizontally.
::垂直移5和横向移3。 -
Stretch
by a
factor
of 2.
::伸展乘以 2 乘以 2 。 -
Shift -3 vertically.
::- 垂直移动 - 垂直移动 - 垂直移动 - Shift - 3 toird - 3 toird -
Stretch by a factor of negative 1.
::以负1系数拉伸
Activity 2: Solving Square Root Equations
::活动2:解决平方根等Example 2-1
::例2-1In the last problem, there were several cases when the equation did not have a solution. The example below shows the process for solving equations with square roots. Although this process will always result in a numerical answer, the answer is not always a valid solution to the equation.
::在最后一个问题中,有几种情况是公式h(x)=2没有解决办法。下面的例子显示了用正方根解析方程式的过程。虽然这一过程总是得出数字答案,但答案并不总是对等方程式有效的解决办法。
::EquationExplantation- 3x-2+7=19 给定方程式。- 3x-2=12 减序. x-24Dividide.x-2=16S 双方对齐。 (对齐是平方根的反方。)x=18Add.-318-2+7=19 通过替换检查答案,看它是否是一个解决方案。- 316+7=19-3(4)=19- 12+7=19-5=19=19 本语句是虚假的。 18 不是一个解决方案, 没有解决方案 。Graphing shows no intersection , which means the equation has no solution. Look at the transition from the third to the fourth line above. At that step, negative 4 was squared. This introduced an extraneous solution . An extraneous solution is a solution that is not valid.
::图形 y3x-2+7 和 y=19 显示没有交叉点, 这意味着方程式 3x-2+7=19 没有解决方案。 看看上面第三行向第四行的过渡情况。 在此步骤中, 负 4 平方 。 这引入了一个不相干解决方案 。 一个不相干解决方案是无效的解决方案 。Work it Out
::工作出来-
Below are several square root equations. Solve each by isolating the
expression
involving a square root, then squaring both sides to finish solving.
Substitute
each answer in the original equation to check if it is actually a solution. In the cases where the answer was not a solution, explain the absence of a solution by graphing the function on the left side of the equation.
::下面是几个平方根方程式。 通过分离涉及平方根的表达式来解决每一个问题, 然后将双方隔开以完成解答 。 在原始方程式中替换每个答案以检查它是否真正是一个解决方案 。 在答案不是解决方案的情况下, 请用方程式左侧的图解来解释没有解决方案 。
::a.xxxxxxxxxxx+4=5h.3x-1+5=7i.x+4=0Solving Equations Involving Square Roots
::涉及 " 平根 " 的溶解平方Isolate the expression involving the square root.
::分离涉及平方根的表达式 。Square both sides, then continue solving.
::双方平方,然后继续解决。Check for extraneous solutions by substituting your answer into the original equation.
::将答案替换为原始方程, 以检查不相干的解决办法 。-
Solve each of the following equations by isolating the expression involving a square root, then squaring both sides to finish solving. Check for extraneous solutions by substituting.
::通过分离涉及平方根的表达式来解析以下方程式中的每一个方程式, 然后将双方隔开以完成解析 。 通过替换来检查不相干的解决办法 。
::ax=xb.x=x+1c.x=x-1d.x=xxxxx=2xf.x-1=x-
A traditional sailboat can increase its top
speed
by increasing its length. But the top speed is not directly proportional to its length. In other words, speed is not a
linear function
of length. The top speed is also not directly proportional to the square of its length. In other words, speed is not a
quadratic function
of length. The top speed of a sailboat is directly proportional to the square root of its length. Here is the equation approximately relating the top speed of a sailboat in kilometers per hour to its length in meters:
::传统的帆船可以通过增加长度来增加其顶部速度。 但顶部速度与其长度不直接成正比。 换句话说, 速度不是长度的线性函数。 顶部速度也与其长度的正方形不直接成正比。 换句话说, 速度不是长方形函数。 帆船的顶部速度与其长度的平方根直接成正比。 这里的方程式大约是每小时以公里计的帆船顶部速度与长度的米数:
::s(x)=1.4xGraph this function. Find the top speeds for boats of different lengths. Find the length required for a desired top speed. If the boat length is increased from 3 meters to 12 meters, by what factor does the speed increase? (Hint: divide by In general, if the length is quadrupled from to by what factor does the speed increase?
::图形显示此函数。 查找不同长度船只的最高速度。 查找需要的最高速度所需的长度。 如果船的长度从3米增加到12米, 速度会增加什么因素? (提示: 将 s( 12) 除以 s(3) 。) 一般来说, 如果长度从一到 4a 翻四番, 速度会增加什么因素?Summary
::摘要-
If two linear functions are inverses,
::如果两个线性函数为反函数, f( g( x))=x 和 g( f( x))=x。 -
An inverse relation for any relation can be created by exchanging
and
::任何关系的反比关系可以通过交换 x 和 y 来建立。 -
are inverse relations.
::y=x2和yx是反向关系。 -
is not a function.
::yx 不是一个函数 。 -
Square root functions can be solved by isolating the root and squaring both sides. Check for extraneous solutions.
::平方根函数可以通过分离根和分隔两侧来解决。 检查不相干的解决办法 。
-
Shift
5
vertically
.