Section outline

  • A circle is a simple closed curve, with a set of all points at a constant distance from a fixed ( center ) point  A , in the same plane . Since the circle has only one center , you can name the circle by naming its center. In this way, you can name this as circle A .
    ::一个圆是一个简单封闭的曲线,与同一平面的固定(中点) A 保持恒定距离的一组所有点。由于该圆只有一个中心,您可以通过命名其中心命名圆。这样,您就可以将它命名为圆 A 。

    The radius of a circle  r , is the distance from the center of the circle to the circle. A circle's size depends only on its radius .
    ::圆 r 的半径是圆的中心到圆的距离。圆的大小仅取决于圆的半径。

    Central angle radius A radius A A perimeter(Circumference) of circle Central angle

    A similarity transformation is one or more rigid transformations ( reflection , rotation , translation) followed by a dilation. When a figure is transformed by a similarity transformation, an image is created that is similar to the original figure. In other words, two figures are similar if a similarity transformation will carry the first figure to the second figure.
    ::相似性变换是指一种或多种硬质变换(反思、旋转、翻译),然后是膨胀。当一个数字被相似性变换所转变时,一个图像与原始图相仿。换句话说,如果相似性变换将第一个图与第二个图相仿,两个数字是相似的。

    In the example, you will show that all circles are similar, a translation and a scale factor (from a dilation) will be found to map one circle onto another.
    ::在此示例中, 您将显示所有圆圈都相似, 将会找到一个翻译和一个比例系数( 来自于一个放大系数) 来将一个圆圈映射到另一个圆圈 。

    Recall two important formulas related to circles:
    ::回顾与圆圈有关的两个重要公式:

    • (Perimeter) of a Circle: C = 2 π r
      ::圆形( 单位) : C=2°r
    • Area of a Circle: A = π r 2
      ::圆圆区域: Ar2

    Once you have shown that all circles are similar, you will explore how the circumferences and areas of circles are related.
    ::一旦你显示所有圆圈都相似,你就会探索圆圈圈圈圈圈圈圈和圆圈圈圈圈圈圈圈的关联。


    Proving Circle Similarity
    ::证明圆环相似性

    1. Consider circle A , centered at point A with radius r A , and circle D , centered at point D with radius r D . Perform a rigid transformation to bring point A to point D .
    ::1. 考虑以半径为rA的A点为中心、以半径为中心、以半径为RD的D点为中心的A圆。

    Draw a vector from point A to point D . Translate circle A along the vector to create circle A . Note that r A r A .
    ::从 A 点到 D 点绘制矢量。 翻转圆 A 沿矢量绘制矢量以创建圆 A 。 注意 r\ r 。

    2. Dilate circle A to map it to circle D . Can you be confident that the circles are similar?
    ::2. 将圆 A 绘制成圆 D 。你能相信圆圈相似吗?

    Because the size of a circle is completely determined by its radius, you can use the radii to find the correct scale factor. Dilate circle A about point A by a scale factor of r D r A .
    ::因为圆的大小完全取决于其半径, 您可以使用 radi 来找到正确的比例系数 。 以 rDrA_ 的 比例系数, 将 A 点的 A 点 向 A 点 向上 。

    Circle A is the same circle as circle D . You can be confident of this because r A = r D r A r A = r D and point A is the same as point D . Because a circle is defined by its center and radius, if two circles have the same center and radius then they are the same circle.
    ::A 圆是和 D 圆相同的圆。 您可以对此有信心, 因为 RArDrArArD 和 A 点与 D 点相同 。 因为 圆是根据其中心或半径定义的, 如果两个圆的中间和半径相同, 那么它们就是相同的圆 。

    This means that circle A is similar to circle D , because a similarity transformation ( translation then dilation ) mapped circle A to circle D .
    ::这意味着圆 A 与圆 D 相似,因为相似性转换(翻译然后放大)将圆 A 绘制为圆 D 。

    Circle A and circle D were two random circles. This proves that in general, all circles are similar.
    ::A圆圈和D圆圈是两个随机圆圈。这证明一般来说,所有圆圈都是相似的。

    3. Show that circle A with center ( 3 , 4 ) and radius 2 is similar to circle B with center ( 3 , 2 ) and radius 4.
    ::3. 显示圆A与中心(-3.4)和半径2相似于圆B与中心(3,2)和半径4相似。

    Translate circle A along the vector from ( 3 , 4 ) to ( 3 , 2 ) . Then, dilate the image about its center by a scale factor of 2. You will have mapped circle A to circle B with a similarity transformation. This means that circle A is similar to circle B .
    ::将矢量的圆A从 (- 3,4) 转换为 (3, 2) 。 然后, 将其中间的图像放大为 2 比例因数 。 您将会绘制圆A 到圆B 的圆B , 并进行相似的转换。 这意味着圆A 与圆B 相似 。

    CK-12 PLIX: Translation Applications in Circle Similarity
    ::CK-12 PLIX: 圆圈相似的翻译应用

     

     


    Examples
    ::实例实例实例实例

    Example 1
    ::例1

    Sean has two circles, one with a radius of 1 inch and another with a radius of 3 inches.
    ::Sean有两个圆圈,一个圆圈半径为1英寸,另一个圆圈半径为3英寸。

    1. What is the ratio between the radii of the circles?
      ::圆圈的半径之间的比例是多少?
    2. What is the scale factor between the two circles?
      ::两个圆之间的比例因素是什么?
    3. What is the ratio between the circumferences of the circles?
      ::圆圈环形之间的比例是多少?
    4. What is the ratio between the areas of the circles?
      ::圆圈区域之间的比例是多少?
    5. What do area ratios and circumference ratios have to do with scale factor?
      ::面积比率和环绕比率与比额表系数有什么关系?

    Sean has two circles, one with a radius of 1 inch and another with a radius of 3 inches.
    ::Sean有两个圆圈,一个圆圈半径为1英寸,另一个圆圈半径为3英寸。

    a. What is the ratio between the radii of the circles?
    ::a. 圆的弧形之间的比例是多少?

    The ratio between the radii is r A r B = 3 1 .
    ::弧度之间的比率是RARB=31。

    b. What is the scale factor between the two circles?
    ::b. 两者之间的比额表因素是什么?

    A scale factor exists because any two circles are similar. You can use the radii to determine the scale factor. The ratio between the radii is r A r B = 3 1 so the scale factor is 3 1 = 3 .
    ::比例系数之所以存在,是因为任何两个圆圈是相似的。您可以使用弧度来确定比例系数。弧度之间的比重是 rArB=31,因此比例系数是 31=3。

    c. What is the ratio between the circumferences of the circles?
    ::c. 圆圈环形之间的比例是多少?

    The circumference of the smaller circle is C B = 2 π ( 1 ) = 2 π . The circumference of the larger circle is C A = 2 π ( 3 ) = 6 π . The ratio between the circumferences is C A C B = 6 π 2 π = 3 1 .
    ::较小圆环为CB=2(1)=2。大圆环为CA=2(3)=6。环比为CACB=6231。

    d. What is the ratio between the area of the circles?
    ::d. 圆圈面积之间的比例是多少?

    The area of the smaller circle is A B = π ( 1 ) 2 = π . The area of the larger circle is A A = π ( 3 ) 2 = 9 π . The ratio between the areas is A A A B = 9 π π = 9 1 . Note that 9 1 = ( 3 1 ) 2 .
    ::较小圆的面积是 AB(1)2。大圆的面积是 AA(3)2=9。区域之间的比例是 AAAB=991。请注意,91=(312)。

    e. What do area ratios and circumference ratios have to do with scale factor?
    ::e. 面积比率和环绕比率与比额表系数有什么关系?

    The area ratio is the scale factor squared, because area is a two dimensional measurement. The circumference ratio is equal to the scale factor, because circumference is a one dimensional measurement.
    ::区域比是比例系数平方,因为区域是二维测量。环形比等于比例系数,因为环形是单维测量。

    Example 2
    ::例2

    Show that circle A with center ( 1 , 7 ) and radius 2 is similar to circle B with center ( 4 , 6 ) and radius 3.
    ::显示圆 A 与 中心 (-1,7) 和 半径 2 与 中心 (4,6) 和 半径 3 的 圆 B 相似 。

    Translate circle A along the vector from ( 1 , 7 ) to ( 4 , 6 ) . Then, dilate the image about its center with a scale factor of 3 2 . You will have mapped circle A to circle B with a similarity transformation. This means that circle A is similar to circle B .
    ::将矢量A的圆A从(-1,7)向(4,6)转换为(-1,7)至(4,6),然后将中心图象放大为32个比例因子。你将绘制圆A到圆B的圆B,并进行类似变换。这意味着圆A与圆B相似。

    Example 3
    ::例3

    The ratio of the circumference of circle D to the circumference of circle C is 4 3 . What is the ratio of their areas?
    ::D圈环绕与C圈环绕之比是43。 其面积之比是多少?

    The ratio of the circumferences is the same as the scale factor. Therefore, the scale factor is 4 3 . The ratio of the areas is the scale factor squared. Therefore, the ratio of the areas is A 1 A 2 = ( C 1 C 2 ) 2 = ( 4 3 ) 2 = 16 9 .
    ::环绕比率与比重系数相同,因此,比重系数为43,区域比率为比重系数平方,因此,区域比率为A1A2=(C1C2)2=(432)=169。

    Example 4
    ::例4

    The ratio of the area of circle F to the area of circle E is 9 4 . What is the ratio of their radii?
    ::F圆区域与E圆区域之比为94,其弧度之比是多少?

    The ratio of the areas is the scale factor squared. Therefore,
    scale factor = r 1 r 2 = A 1 A 2 = 9 4 = 3 2 . The ratio of the radii is the same as the scale factor, so the ratio of the radii is 3 2 .
    ::区域之比为比例系数平方。因此,比例系数=r1r2A1A294=32。弧度之比与比例系数相同,因此,弧度之比为32。

      Remember this!
    • A circle is the set of all points that are the same distance away from a specific point, called the center.
      ::一个圆是所有点的一组,这些点与特定点的距离相同,称为中点。
    • The circumference of a circle is C = 2 π r .
      ::圆环环为C=2°r。
    • The area of a circle is A = π r 2
      ::圆区域为 Ar2
    • All circles are similar.
      ::所有圆圈都相似。

    Review
    ::审查审查审查审查

    For #1-#10, show that the circles are similar by describing the similarity transformation necessary to map one circle onto the other.
    ::对于 #1-#10, 显示圆圈相似, 描述为绘制一个圆形到另一个圆形所需的相似性转换 。

    1. Circle A with center ( 2 , 7 ) and radius 4. Circle B with center ( 1 , 4 ) and radius 3.
    ::1. A圆圈,中心(2,7)和半径4;B圆圈,中心(1,-4)和半径3。

    2. Circle A with center ( 6 , 4 ) and radius 3. Circle B with center ( 5 , 6 ) and radius 5.
    ::2. A圆圈,中心(6,4)和半径3;B圆圈,中心(-5,6)和半径5。

    3. Circle A with center ( 1 , 4 ) and radius 2. Circle B with center ( 3 , 2 ) and radius 7.
    ::3. A圆圈,中心(1,4)和半径2;B圆圈,中心(3,-2)和半径7。

    4. Circle A with center ( 8 , 1 ) and radius 6. Circle B with center ( 6 , 4 ) and radius 8.
    ::4. A圆圈,中心(8,1)和半径6.B圆圈,中心(6,4)和半径8。

    5. Circle A with center ( 2 , 10 ) and radius 3. Circle B with center ( 1 , 4 ) and radius 6.
    ::5. A圆圈,中心(-2,10)和半径3;B圆圈,中心(-1,-4)和半径6。

    6. Circle A with center ( 1 , 5 ) and radius 4. Circle B with center ( 1 , 5 ) and radius 5.
    ::6. A圆圈,中心(-1,5)和半径4.B圆圈,中心(-1,5)和半径5。

    7. Circle A with center ( 4 , 2 ) and radius 1. Circle B with center ( 1 , 8 ) and radius 4.
    ::7. A圆圈,中心(-4,-2)和半径1;B圆圈,中心(1,8)和半径4。

    8. Circle A with center ( 10 , 3 ) and radius 5. Circle B with center ( 4 , 2 ) and radius 8.
    ::8. A圆圈,中心(10.3)和半径5;B圆圈,中心(4.2)和半径8。

    9. Circle A with center ( 12 , 4 ) and radius 10. Circle B with center ( 12 , 4 ) and radius 12.
    ::9. A圆圈,中心(12,4)和半径10;B圆圈,中心(12,4)和半径12。

    10. Circle A with center ( 7 , 6 ) and radius 9. Circle B with center ( 1 , 4 ) and radius 9.
    ::10. A圆圈,中心(-7,6)和半径9;B圆圈,中心(1,-4)和半径9。

    11. The ratio of the circumference of circle A to the circumference of circle B is 2 3 . What is the ratio of their radii?
    ::11. A圈环绕与B圈环绕之比是23,其弧度之比是多少?

    12. The ratio of the area of circle A to the area of circle B is 6 1 . What is the ratio of their radii?
    ::12. A圆区域与B圆区域之比是61,其弧度之比是多少?

    13. The ratio of the radius of circle A to the radius of circle B is 5 9 . What is the ratio of their areas?
    ::13. 圆A半径与圆B半径之比是59,其区域之比是多少?

    14. The ratio of the area of circle A to the area of circle B is 12 5 . What is the ratio of their circumferences?
    ::14. A圆区域与B圆区域之比为125。 圆区域周长之比是多少?

    15. To show that any two circles are similar you need to perform a translation and/or a dilation. Why won't you ever need to use reflections or rotations?
    ::15. 要显示任何两个圆圈是相似的,你必须翻译和/或放大。为什么你从来不需要使用反射或旋转?

    16. In the diagram below, points A , B , C and D are each at the center of the circle. If the circles are all congruent, what is the relationship between the area of the square A B C D and the sum of the areas of all four circles?
    ::16. 在下图中,A、B、C和D点分别位于圆圈的中心,如果圆圈都一致,那么ABCD平方区域与所有四个圆圈区域之和之间的关系是什么?

    lesson content

    17. You have placed a safety light on the circumference of your bike tire. Describe the path of the light as you go down and then up a hill. Use words and a diagram.
    ::17. 你对自行车轮胎的环绕设置了安全灯,描述下坡然后上山的光线路径,使用文字和图表。

    Review (Answers)
    ::审查(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。