三角函数的转换
Section outline
-
Lesson Objectives
::经验教训目标-
Identify the effect on
graphs of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative).
::以 f( x) + k、 k( f( x)、 f( kx) 和 f( x) + k ) 替换 f( x) 的图形, 以 k( 正和负) 的具体值来表示 。 -
Graph
trigonometric functions
, showing period, midline, and
.
::图表三角函数,显示期间、中线和 。
Introduction: Modeling Sound
::导言:建模声音I n the previous section, Trigonometric Functions, you looked at how sine and cosine functions can be used to model astronomical phenomena. Sine functions and cosine functions form a wave pattern. Since sound and light travel as a wave, trigonometric functions are especially useful in modeling their behavior. In the section , you learned that music notes increase exponentially in frequency. Additionally, when frequencies are combined, the sound will be more pleasing if the ratio of the frequencies reduces to a simple ratio. Use the interactive below to explore this interaction between sound waves visualized as sinusoidal functions .
::在上一节“三角函数”中,您查看了如何用正弦和正弦函数来模拟天文现象。正弦函数和余弦函数形成波形。由于声光波和光波形,三角函数在模拟其行为方面特别有用。在节中,您了解到音乐的频率成倍增加。此外,当频率合并时,如果频率比降低到简单比例,声音会更令人高兴。使用下面的交互作用来探索声波之间的这种相互作用,将声波可视化为正弦函数。Discussion Questions:
::讨论问题:-
Sounds are more pleasing when there is a simple ratio between the frequencies. Set
f
(
x
)
and
g
(
x
)
to frequencies such as the ratio of an octave, where the ratio of
f
(
x
)
to
g
(
x
)
is 2:1. What about the sound waves makes you think this sound would be considered pleasing? Try other common intervals in music like the perfect fifth (3:2) and perfect fourth (4:3).
::当频率之间的比例比较简单时,声音会更令人高兴。 设置 f( x) 和 g( x) 与频率的比, 如八进制的比例, F( x) 与 g( x) 的比率是 2 。 那么声波会让您认为这声音会令人高兴吗? 尝试音乐中的其他常见间隔, 如完美的第五次( 3: 2) 和 完美的第四次( 4: 3) 。 -
Why do you think a note sounds the same at opposite amplitudes like 0.5 and -0.5?
::为什么你认为一个音符 听起来和0.5和0.5一样?
Activity 1: Amplitude
::活动1:振幅I t will take a vertical stretch or shrink to change the of a sine or cosine function. A vertical stretch or shrink on the function f ( x ) can be modeled as a ⋅ f ( x ) . Using a sine and cosine function, this would look like y = a ⋅ sin x or y = a ⋅ cos x . If a > 1 , the function will stretch vertically by a factor of a . If a < 1 , the function will shrink vertically by a factor of 1 a .
::要改变正弦函数或余弦函数,需要垂直伸缩或缩缩。函数 f(x) 的垂直伸缩或缩缩可以以 af(x) 模式建模。使用正弦和余弦函数,这看起来像 y=asinx 或 y=acosx。 如果 a> 1, 函数将垂直延伸为 a 的因数。 如果是 < 1, 函数将垂直缩缩缩为 1a 的因数 。Example
::示例示例示例示例G raph y = 1 2 cos x over two periods.
::横跨两个时期的 y= 12cosx图。Since the value of a is less than 1, the amplitude will shrink. I n this case, the function will shrink vertically by half. The height of every output will be half of the height for the parent cosine function, f ( x ) = cos x .
::由于 a 值小于 1, 振幅会缩小。 在这种情况下, 函数会垂直缩小一半。 每个输出的高度将是父余弦函数的高度的一半, f( x) =cosx 。Answer:
::答复:The graph of y = cos x is shown in blue, and the graph of y = 0.5 cos x is shown in red. Just like with other functions, when the leading coefficient is negative, the function is reflected over the x -axis . Use the interactive below to explore the relationship between the a -value and the amplitude of the graph.
::正如其他函数一样,当主要系数为负值时,函数会反射到 X 轴上。使用下面的交互功能来探索图表的值和振幅之间的关系。
Activity 2: Period
::活动2:活动期2:A horizontal stretch or shrink changes the period of a sine or cosine function. A horizontal stretch or shrink on the function f ( x ) can be modeled as f ( b ⋅ x ) . Using a sine and cosine function, this would look like y = sin ( b ⋅ x ) or y = cos ( b ⋅ x ) . If b > 1 , the function will shrink horizontally by a factor of b . If b < 1 , the function will stretch horizontally by a factor of 1 b .
::水平拉伸或缩放会改变正弦函数或余弦函数的周期。 函数 f( x) 上的水平拉伸或缩放可以以 f( b) (x) 模式建模。 使用正弦和余弦函数, 这看起来像 y=sin( b) 或 y=cos ( b) 。 如果 b> 1, 该函数会水平缩放为 b 的系数。 如果 b < 1, 该函数会水平拉动为 1b 的系数 。Example
::示例示例示例示例Graph y = sin ( 1 3 x ) over two periods.
::图y=sin(13x),横跨两个时期。Since the value of a is 3, which is less than 1, the period will stretch by a factor of 3. The x-value of every output will triple from the parent sine function, f ( x ) = sin x . The image below shows the graph of y = sin x in blue and the graph of y = sin ( 1 3 x ) in red for comparison.
::由于一个值为 3, 低于 1, 时段将延伸为 3 乘以 3, 每个输出的 x 值从父正弦函数 f( x) = sinx 将增加三倍。 下面的图像显示 y= sinx 的蓝色图和 y=sin( 13x) 的红色图, 以便比较 。Answer:
::答复:The graph of y = sin x is shown in blue, and the graph of y = 1 3 sin x is shown in red. Just like with other functions, when the value of b is negative, the function is reflected over the y-axis. Explore this relationship further below.
::与其他函数一样, 当 b 值为负时, 该函数会反映在 Y 轴上。 请在下面进一步探讨此关系 。
Activity 3: Shifts
::活动3:变动The horizontal shift of a sinusoidal graph is called a phase shift . The rules for the transformation of trigonometric functions are consistent with the rules for other functions. This type of transformation occurs when a quantity is added to or subtracted from the input of a function. This type of shift can be written as f ( x − h ) = s i n ( x − h ) . Recall that with horizontal translations, a positive h value will shift the function h units left, and a negative h value will shift the function h units right.
::等离子图的横向移动称为相移。三角函数的转换规则与其他函数的规则是一致的。当函数输入中添加或减去一个数量时,这种类型的转换就会发生。这种类型的转换可以写成 f(x-h)=sin(x-h) =sin(x-h) 。提醒注意,如果水平转换,正 h 值会改变函数左移 h 单位,而负 h 值会将函数向右移动 h 单位。Example
::示例示例示例示例Graph y = cos ( x − π 4 )
::图y=cos(x%4)This function will be shifted π 4 units to the right. The easiest way to sketch the curve is to start with the parent graph and then move it to the right the correct number of units.
::此函数将被移到右侧 4 个单位。 绘制曲线最容易的方法是从父图形开始, 然后将其移动到右侧, 正确的单位数 。Answer:
::答复:Sinusoidal functions can be shifted vertically by adding or subtracting a quantity to the output of the function. This type of shift can be written as f ( x ) + k = s i n ( x ) + k . A positive k-value will shift the function k units up, and a negative k-value will shift the function k units down. Use the interactive below to explore vertical shifts of the sine functions.
::Sinusoid 函数可以通过在函数输出中增加或减去一个数量来垂直移动。 这种类型的转换可以写成 f( x)+k=sin( x)+k。 正面的 k- 值会将函数 k 单位向上移动, 负的 k- 值会将函数 k 单位向下移动。 使用下面的互动来探索正弦函数的垂直移动 。
Extension: Shifts Continued
::扩展扩展: Shifts 继续Use the interactive below for more practice shifting sinusoidal functions.
::使用下面的交互功能来做更多的练习, 转换正弦函数 。
Activity 4: Transforming Sine and Cosine Functions
::活动4:改变正弦和余弦函数The general equation for a sine curve is: y = a sin ( b ( x − h ) ) + k . Use the interactive below to explore this form.
::正弦曲线的一般方程是:y=asin(b(x-h)+k)+k。使用下面的交互式方程来探索这个形式。Example
::示例示例示例示例Without using a graphing calculator, sketch the graph of
::在不使用图形计算器的情况下,绘制正弦函数的图形,其中a=3, h2, b=2, k=4。S tart by writing an equation with the values given above:
::以写入上面给定值的方程式开始 :y = 3 sin ( 2 ( x − π 2 ) ) + 4
::y= 3sin (2(x2)+4It will be helpful to start with the parent graph and translate it one step at a time. The graph below displays the function y = s i n ( x )
::以父图形开始并一次翻译一个步骤将会很有帮助。 下图显示函数 y=sin( x)The graph of y = sin x Now adjust the phase shift of the function, which shifts the graph to the left by π 2 or 90 o . The function graphed below in blue is the function y = sin ( x − π 2 ) .
::现在调整函数的相位移, 该函数将图向左移到 2 或 90 o 。 下面以蓝色绘制的函数是 y=sin( x) 2 函数 y=sin。The graphs y = sin x (orange), and y = sin ( x − π 2 ) (blue) Now adjust the midline of the function. The value of k impacts the location of the midline. In this example, k = 4 , which shifts the graph up by 4 units on the y-axis. The purple function graphed below is the function y = sin ( x − π 2 ) + 4 .
::现在调整函数的中线。 k 的值会影响中线的位置。 在此示例中, k=4 将图形在 Y 轴上向上移动 4 个单位。 下面的紫色函数是 y=sin( x2)+4 函数 。The graphs y = sin ( x − π 2 ) (blue), and y = sin ( x − π 2 ) + 4 (purple) Next, adjust the amplitude of the function. The amplitude of the purple graph is 1, but the new equation has an amplitude of 3 , so the distance between the midline (which is now at y = 4 ) and the maximum and minimum y-values should be 3 . Therefore, the maximum and minimum values should be at y = 1 and y = 7. The function graphed below in green is the function : y = 3 sin ( x − π 2 ) + 4 .
::接下来,调整函数的振幅。紫色图的振幅为1,但新方程式的振幅为3,因此中间线(目前为y=4)之间的距离和最大和最小的y值应为3,因此,最大和最低值应为y=1和y=7。以下以绿色显示的函数为函数:y=3sin(x=2)+4。The graphs y = sin ( x − π 2 ) + 4 (purple) and y = 3 sin ( x − π 2 ) + 4 (green) Finally, you need to adjust the frequency of the graph. Since the value of b is 2, the graph needs to go through 2 complete cycles between 0º and 360º or between 0 and 2 π . The function graphed in red below is the function y = 3 sin ( 2 ( x − π 2 ) ) + 4 .
::最后,您需要调整图形的频率。由于 b 值为 2 , 图形需要经历 0o 至 360o 或 0 至 2 ° 之间的两个完整周期。 以下红色图表显示的函数是 y= 3sin (2(x)2)+ 4 函数 y= 3sin (2(x)2)+4 。The red graph is of the function y = 3 sin ( 2 ( x − π 2 ) ) + 4. Example
::示例示例示例示例Find the equation of the cosine curve below.
::在下面查找余弦曲线的方程。Find the equation of the cosine curve below. The parent graph is in green (below). It moves up 3 units (red) and then to the right 3 π 4 units (blue). This means that the h value is 3 π 4 and the k value is 3. Therefore, the equation is y = cos ( x − 3 π 4 ) + 3 .
::父图以绿色( 下方) 表示, 它向上移动 3 个单位( 红色) , 然后向右移动 3 4 个单位( 蓝色) 。 这意味着 h 值是 3 4, k 值是 3 。 因此, 方程式是 y=cos( x-3 4)+ 3 。Answer: y = cos ( x − 3 π 4 ) + 3
::答复:y=cos(x-3-4)+3If you moved the cosine curve left instead of right , i t would produce the equivalent equation y = cos ( x + 5 π 4 ) + 3. Use the interactive below to practice graphing a translated function .
::如果将余弦曲线向左移动而不是向右移动,它会产生等效的公式y=cos(x+54)+3。 使用下面的交互作用来练习绘制翻译函数的图形。Discussion Question: How can you write the sine function as a transformation of the parent cosine function?
::讨论问题:您如何将正弦函数写成父余弦函数的转换?Summary -
There are many different ways to transform the graph of a sine or cosine function.
The general equation for the transformations of a sine function is y = a sin ( b ( x − h ) + k
-
a
is the vertical stretch, changing the amplitude.
::a 是垂直伸展,改变振幅。 -
b
is the horizontal stretch, changing the period.
::b 是水平拉伸,改变周期。 -
h
is the horizontal shift, or phase shift, moving the graph right or left.
::h 是指水平移动,或相向移动,向右或向左移动图形。 -
k
is the vertical shift, moving the graph up or down.
::k 是垂直移动, 向上或向下移动图形 。
::转换正弦函数或正弦函数的图形有多种不同方式。正弦函数或正弦函数的转换一般方程式是 y=asin(b(x-h)+k a) 是垂直拉伸, 改变振幅。 b 是水平拉伸, 改变周期。 h 是水平移动, 或相向移动, 向右或向左移动。 k 是垂直移动, 向上或向下移动 。 -
a
is the vertical stretch, changing the amplitude.
Wrap-Up: Review Questions
::总结:审查问题 -
Identify the effect on
graphs of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative).