理性数字和不合理数字的属性
章节大纲
-
Properties of Rational versus Irrational Numbers
::合理和不合理数字的属性Not all square roots are irrational, but any square root that can’t be reduced to a form with no radical signs in it is irrational. For example, is rational because it equals 7, but can’t be reduced farther than . That factor of is irrational, making the whole expression irrational.
::并非所有的平方根都是非理性的,但任何不能被缩小为没有激进迹象的形式的平方根都是非理性的。 比如,49是理性的,因为它等于7,但50不能比52更进一步。 2是非理性的,使整个表达变得不合理。Identifying Rational and Irrational Numbers
::确定合理和不合理数字Identify which of the following are and which are irrational numbers.
::确定以下哪些是非理性数字,哪些是非理性数字。a) 23.7
:a) 23.7
23.7 can be written as , so it is rational.
::23.7可以写为23710,因此是合理的。b) 2.8956
::b) 2.89562.8956 can be written as , so it is rational.
::2.8956可以写为289561000,所以是合理的。c)
::c) ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________We know from the definition of that the decimals do not terminate or repeat, so is irrational.
::3141592654... 我们从 的定义中知道 小数不会终止或重复, 所以是不合理的。d)
::d) 6 6. We can’t reduce it to a form without radicals in it, so it is irrational.
::6=2 ×3. 我们无法将它降为没有激进的形态, 因此它是非理性的。Repeating Decimals
::重复十进数Any number whose decimal representation has a finite number of digits is rational, since each decimal place can be expressed as a fraction. For example, This decimal goes on forever, but it’s not random; it repeats in a predictable pattern. Repeating decimals are always rational; this one can actually be expressed as .
::任何小数表示的十进制数字都有一定数量的数字是合理的, 因为每个小数位可以以小数表示。 例如, 3. 27 3. 32 727 272. 27... 这个小数会永远持续下去, 但这不是随机的; 它会以可预测的模式重复。 重复小数总是合理的; 这个小数位实际上可以表示为 3611 。Expressing Decimals as Fractions
::以分数表示十进数Express the following decimals as fractions.
::以下列小数分数表示。a.) 0.439
::a) 0.4390.439 can be expressed as , or just . Also, any decimal that repeats is rational, and can be expressed as a fraction.
::0.439 可以表示为410+3100+91000, 或只有4391000。此外, 重复的任何小数点是合理的, 可以表示为分数 。b.)
:b) 0.2538'
can be expressed as , which is equivalent to .
::2538 以25100+389900表示,相当于25139900。Classify Real Numbers
::分类 Real 数字We can now see how real numbers fall into one of several categories.
::我们现在可以看到实际数字如何属于几个类别之一。If a real number can be expressed as a rational number , it falls into one of two categories. If the denominator of its simplest form is one, then it is an integer . If not, it is a fraction (this term also includes decimals, since they can be written as fractions.)
::如果一个实际数字可以以合理数字表示,则它属于两类中的一种。如果其最简单形式的分母为一种,则它是一个整数。如果不是,它是一个分数(这个术语也包括小数,因为它们可以作为分数来写)。If the number cannot be expressed as the ratio of two integers (i.e. as a fraction), it is irrational .
::如果数字不能以两个整数(即分数)之比表示,则不合理。Classify the following real numbers.
::将以下真实数字分类 。a) 0
::a) 0 0Integer
::整数b) -1
::b) -1Integer
::整数c)
:c) %3
Irrational (Although it's written as a fraction, is irrational, so any fraction with in it is also irrational.)
::讽刺(尽管它是一个小数, 是非理性的, 所以任何小数, 也是非理性的。)d)
:d) 23
Irrational
::无理e)
:e) 369
Rational (It simplifies to , or .)
::合理(简化为69或23)。Example
::示例示例示例示例Place the following numbers in numerical order , from lowest to highest.
::按数字顺序排列以下数字,从最低到最高。Example 1
::例1Since is the only negative number, it is the smallest.
::- 075是唯一负数,是最小数。Since , .
::自100>99,10099>1以来。Since the , then .
::从3 < 3 < 开始,然后是33 < 1。Since , then
::自% 3 起, 然后% 3 > 1 @% 2% 3 > 2This means that the ordering is:
::这意味着命令是:Review
::回顾For questions 1-7, classify the following numbers as an integer, a rational number or an irrational number.
::对于问题1-7,将下列数字分类为整数、合理数字或不合理数字。-
Write 0.6278 as a fraction.
::将0.6278作为一个分数写下来。 -
Place the following numbers in numerical order, from lowest to highest.
::按数字顺序排列下列数字,从最低到最高。 6261501.51613 -
Use the marked points on the number line and identify each proper fraction.
::使用数字行上的标记点并确定每个适当的分数。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。