Section outline

  • Properties of Rational versus Irrational Numbers 
    ::合理和不合理数字的属性

    Not all square roots are irrational, but any square root that can’t be reduced to a form with no radical signs in it is irrational. For example, 49 is rational because it equals 7, but 50 can’t be reduced farther than 5 2 . That factor of 2 is irrational, making the whole expression irrational.
    ::并非所有的平方根都是非理性的,但任何不能被缩小为没有激进迹象的形式的平方根都是非理性的。 比如,49是理性的,因为它等于7,但50不能比52更进一步。 2是非理性的,使整个表达变得不合理。

    Identifying Rational and Irrational Numbers 
    ::确定合理和不合理数字

    Identify which of the following are and which are irrational numbers.
    ::确定以下哪些是非理性数字,哪些是非理性数字。

    a) 23.7
    :sada) 23.7

    23.7 can be written as 23 7 10 , so it is rational.
    ::23.7可以写为23710,因此是合理的。

    b) 2.8956
    ::b) 2.8956

    2.8956 can be written as 2 8956 10000 , so it is rational.
    ::2.8956可以写为289561000,所以是合理的。

    c) π
    ::c) ___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    π = 3.141592654 We know from the definition of π that the decimals do not terminate or repeat, so π is irrational.
    ::3141592654... 我们从 的定义中知道 小数不会终止或重复, 所以是不合理的。

    d) 6
    ::d) 6 6

      6 = 2   × 3 . We can’t reduce it to a form without radicals in it, so it is irrational.
    ::6=2 ×3. 我们无法将它降为没有激进的形态, 因此它是非理性的。

    Repeating Decimals
    ::重复十进数

    Any number whose decimal representation has a finite number of digits is rational, since each decimal place can be expressed as a fraction. For example, 3. 27 ¯ = 3.272727272727 This decimal goes on forever, but it’s not random; it repeats in a predictable pattern. Repeating decimals are always rational; this one can actually be expressed as 36 11 .
    ::任何小数表示的十进制数字都有一定数量的数字是合理的, 因为每个小数位可以以小数表示。 例如, 3. 27 3. 32 727 272. 27... 这个小数会永远持续下去, 但这不是随机的; 它会以可预测的模式重复。 重复小数总是合理的; 这个小数位实际上可以表示为 3611 。

    Expressing Decimals as Fractions 
    ::以分数表示十进数

    Express the following decimals as fractions.
    ::以下列小数分数表示。

    a.) 0.439
    ::a) 0.439

    0.439 can be expressed as 4 10 + 3 100 + 9 1000 , or just 439 1000 . Also, any decimal that repeats is rational, and can be expressed as a fraction.
    ::0.439 可以表示为410+3100+91000, 或只有4391000。此外, 重复的任何小数点是合理的, 可以表示为分数 。

    b.) 0.25 38 ¯
    :sadb) 0.2538'

    0.25 38 ¯ can be expressed as 25 100 + 38 9900 , which is equivalent to 2513 9900 .
    ::2538 以25100+389900表示,相当于25139900。

    Classify Real Numbers
    ::分类 Real 数字

    We can now see how real numbers fall into one of several categories.
    ::我们现在可以看到实际数字如何属于几个类别之一。

    If a real number can be expressed as a rational number , it falls into one of two categories. If the denominator of its simplest form is one, then it is an integer . If not, it is a fraction (this term also includes decimals, since they can be written as fractions.)
    ::如果一个实际数字可以以合理数字表示,则它属于两类中的一种。如果其最简单形式的分母为一种,则它是一个整数。如果不是,它是一个分数(这个术语也包括小数,因为它们可以作为分数来写)。

    If the number cannot be expressed as the ratio of two integers (i.e. as a fraction), it is irrational .
    ::如果数字不能以两个整数(即分数)之比表示,则不合理。

    Classify the following real numbers.
    ::将以下真实数字分类 。

    a) 0
    ::a) 0 0

    Integer
    ::整数

    b) -1
    ::b) -1

    Integer
    ::整数

    c) π 3
    :sadc) %3

    Irrational (Although it's written as a fraction,  π  is irrational, so any fraction with  π  in it is also irrational.) 
    ::讽刺(尽管它是一个小数, 是非理性的, 所以任何小数, 也是非理性的。)

    d) 2 3
    :sadd) 23

    Irrational
    ::无理

    e) 36 9
    :sade) 369

    Rational (It simplifies to 6 9 , or 2 3 .)
    ::合理(简化为69或23)。

    Example
    ::示例示例示例示例

    Place the following numbers in numerical order , from lowest to highest.
    ::按数字顺序排列以下数字,从最低到最高。

    Example 1
    ::例1

    100 99 3 3 .075 2 π 3

    Since .075 is the only negative number, it is the smallest.
    ::- 075是唯一负数,是最小数。

    Since 100 > 99 , 100 99 > 1 .
    ::自100>99,10099>1以来。

    Since the 3 < s , then 3 3 < 1 .
    ::从3 < 3 < 开始,然后是33 < 1。

    Since π > 3 , then π 3 > 1 2 π 3 > 2
    ::自% 3 起, 然后% 3 > 1 @% 2% 3 > 2

    This means that the ordering is:
    ::这意味着命令是:

    .075 , 3 3 , 100 99 , 2 π 3

    Review 
    ::回顾

    For questions 1-7, classify the following numbers as an integer, a rational number or an irrational number.
    ::对于问题1-7,将下列数字分类为整数、合理数字或不合理数字。

    1. 0.25
    2. 1.35
    3. 20
    4. 25
    5. 100
    6. π 2
    7. 2 18
    8. Write 0.6278 as a fraction.
      ::将0.6278作为一个分数写下来。
    9. Place the following numbers in numerical order, from lowest to highest. 6 2 61 50 1.5 16 13
      ::按数字顺序排列下列数字,从最低到最高。 6261501.51613
    10. Use the marked points on the number line and identify each proper fraction.
      ::使用数字行上的标记点并确定每个适当的分数。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。