单体体在多面体中的乘法
Section outline
-
Multiplication of Monomials by Polynomials
::单体体在多面体中的乘法Just as we can add and subtract , we can also multiply them. The and the techniques you’ve learned for dealing with exponents will be useful here.
::正如我们可以增减一样,我们也能够乘以它们。 你所学到的对付表率的方法和技巧在这里将很有用。Multiplying a Polynomial by a Monomial
::以单声道乘以多声道When multiplying polynomials, remember the exponent rules , particularly the product rule: .
::当乘多数值时,请记住前列规则,特别是产品规则:xnxm=xn+m。If the expressions have coefficients and more than one variable , multiply the coefficients just as you would any number and apply the product rule on each variable separately.
::如果表达式有系数和一个以上变量,则与任何数字一样乘以系数,并对每个变量分别适用产品规则。Multiplying Monomials
::乘数单数Multiply the following monomials.
::乘以下列单数。a)
:a) (2x2(5x3))
:2x2( 5x3) = (2) 5x5) = (x2xx3) = 10x2+3= 10x5
b)
:--3y4)(2y2)
:-3y4)(2y2)=(-32) (y4y2) 6y4+26y6)
c)
:c) (3xy5)(-6x4y2)
:3xy5 (- 6x4y2) 18x1+4y5+218x5y7)
d)
:d) (-12a2b3c4)(-3a2b2)
:-12a2b3c4)(-3a2b2)=36a2+2b3+2c4=36a4b5c4)
To multiply a polynomial by a monomial , use the Distributive Property . Remember, that property says that .
::要将一个多数值乘以单数值, 请使用分配属性。 记住, 该属性表示 a( b+c) =ab+ac 。Using the Distributive Property
::使用分配财产1. Multiply:
::1. 乘以:a)
:a) 3(x2+3x-5)
::3(x2+3x-5)=3(x2)+3(3x)-3(5)=3x2+9x-15b)
:b) 4x(3x2-7)
::4x(3x2-7)=(4x(3x2)+(4x(7)=12x3-28x)c)
::c)-7y(4y2-2y+1)
::-7y(4y2-2y+1)=(-7y(4y2)+(-7y)(-2y)+(-7y)(-7y)(-7y)+(-7y)(1)28y3+14y2-7yyNotice that when you use the Distributive Property, the problem becomes a matter of just multiplying monomials by monomials and adding all the separate parts together.
::请注意,当您使用分配财产时,问题就变成了将单项财产乘以单项财产,并将所有单独的部分加在一起的问题。2. Multiply:
::2. 乘以:a)
:a) 2x3(- 3x4+2x3- 10x2+7x+9)
::2x3(- 3x4+2x3- 2x3- 10x2+7x+9) =( 2x3)(-3x4) +( 2x3)( 2x3) +( 2x3)( - 10x3) +( 2x3)( 7x) +(2x3)( 9) 6x7+4x6-205+14x4+18x3)b)
::b)-7a2bc3(5a2-3b2-9c2)
::-7a2bc3(5a2-3b2-9c2)=(-7a2bc3(5a2)+(-7a2bc3)(-3b2)+(-7a2bc3)(-3b2)+(-7a2bc3)(-9c2)+(-3a2bc3)(-9c2)+(35a4bc3+21a2b3c3+63a2c5)Example
::示例示例示例示例Example 1
::例1Multiply .
::乘以-2a2b4(3ab2+7a3b-9a+3)Multiply the monomial by each term inside the parenthesis:
::以括号内的每个词乘以单数 :
::-2a2b4(3ab2+7a3b-9a+3)=(-2a2b4(3ab2)+(-2a2b4)+(-2a2b4(7a3b)+(-2a2b4(9a)+(-2a2b4)(9a)+(-2a2b4)(3)*6a3b6-14a5b5+18a3b4-6a2b4)Review
::回顾Multiply the following monomials.
::乘以下列单数。-
:2x)(-7x)
-
:10x( 3xy))
-
:4mn)(0.50nm2)
-
:-5a2b)(-12a3b3)
-
:3xy2z2)(15x2yz3)
Multiply and simplify.
::乘数和简化。-
::17(8x-10) -
::2x(4x-5) -
::9x3( 3x2 - 2x+7) -
::3x( 2y2+y- 5) -
::10q(3q2r+5r) -
::- 3a2b(9a2-4b2)
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -