二次曲线表达式的量化
Section outline
-
Factorization of Quadratic Expressions
::二次曲线表达式的量化Quadratic polynomials are polynomials of the degree . The standard form of a quadratic polynomial is written as
::二次二次多面性是第二度的多面性。二次多面性的标准形式是:
::ax2+bx+c 轴x2+bx+cwhere and stand for constant numbers. Factoring these polynomials depends on the values of these constants. In this section we’ll learn how to factor quadratic polynomials for different values of and . (When none of the coefficients are zero, these expressions are also called quadratic trinomials , since they are polynomials with three terms .)
::a, b, c 代表不变数值。 计算这些多数值取决于这些常数的值。 在本节中,我们将学习如何将a, b 和 c 等值的不同值乘以二次多数值。 (当没有一个系数为零时,这些表达也被称为二次三数值,因为它们是三术语的多元数。 )You’ve already learned how to factor quadratic polynomials where . For example, for the quadratic , the common factor is and this expression is factored as . Now we’ll see how to factor quadratics where is nonzero.
::您已经学会了如何在 c=0 的地方将四边形多面体乘以。 例如,对于四方轴2+bx, 共同系数是 x, 这个表达式被乘以 x( 轴+b ) 。 现在我们可以看到如何在 c 不为零的情况下将二次形因素乘以 。Factor when a = 1, b is Positive, and c is Positive
::当 a = 1, b = 阳, c = 阳时的乘数First, let’s consider the case where is positive and is positive. The quadratic trinomials will take the form
::首先,让我们考虑a=1,b是正数,c是正数。
::x2+bx+c x2+bx+cYou know from multiplying binomials that when you multiply two factors , you get a quadratic polynomial. Let’s look at this process in more detail. First we use distribution:
::从乘以二进制中可以知道,当乘以两个因数( x+m ( x+n)) 时,你就会得到一个四边形的多面体。让我们更详细地看一下这个过程。 我们首先使用分布法 :
:x+m(x+n)=x2+nx+mx+mn)
Then we simplify by combining the like terms in the middle. We get:
::然后我们把类似条件合并到中间来简化。我们得到:
:x+m)(x+n)=x2+(n+m)x+mn
So to factor a quadratic, we just need to do this process in reverse.
::因此,为了将二次方位乘法,我们只需要将这一过程倒转。
::我们看到 x2+(n+m) x+mnis 和 x2+bx+c 一样的窗体This means that we need to find two numbers and where
::这意味着我们需要找到两个数字m和n
::n+m=bandmn=c = bandmn=c = n+m=bandmn=cThe factors of are always two binomials
::x2+bxx+c的因数总是两个二进制
:x+m(x+n))
such that and .
::n+m=b和mn=c。Factoring
::保理1. Factor .
::1. 系数x2+5x+6。We are looking for an answer that is a product of two binomials in " data-term="Parentheses" role="term" tabindex="0"> parentheses :
::我们正在寻找一个答案,这是括号中两个二项概念的产物:
:x)(x)
We want two numbers and that multiply to 6 and add up to 5. A good strategy is to list the possible ways we can multiply two numbers to get 6 and then see which of these numbers add up to 5:
::我们要两个数字 m 和 n , 乘以 6 和 5 。 一个好的策略是列出 我们乘以两个数字 可能的方法 来达到 6 , 然后看看其中哪个数字加到 5 :
::6=16和1+6=76=23和2+3=5 这是正确的选择 。So the answer is .
::答案是 (x+2)(x+3) 。We can check to see if this is correct by multiplying :
::我们可以通过乘( x+2)( x+3) 来检查是否正确 :
::x+2x+3_ 3x+6x2+2xx2+5x+6The answer checks out.
::答案检查出来。2. Factor .
::2. 系数x2+7x+12。We are looking for an answer that is a product of two binomials in parentheses:
::我们正在寻找一个答案,这是括号中两个二项概念的产物x)(x)
The number 12 can be written as the product of the following numbers:
::12号可以写成以下数字的产物:
::12=112和1+12=1312=26和2+6=812=34和3+4=7 这是正确的选择。The answer is .
::答案是 (x+3)(x+4) 。3. Factor .
::3. 系数x2+8x+12。We are looking for an answer that is a product of two binomials in parentheses:
::我们正在寻找一个答案,这是括号中两个二项概念的产物x)(x)
The number 12 can be written as the product of the following numbers:
::12号可以写成以下数字的产物:
::12=112和1+12=1312=26和2+6=8 这是正确的选择 12=34和3+4=7The answer is .
::答案是 (x+2)(x+6) 。Example
::示例示例示例示例Example 1
::例1Factor .
::系数 x2+12x+36。We are looking for an answer that is a product of two binomials in parentheses:
::我们正在寻找一个答案,这是括号中两个二项概念的产物x)(x)
The number 36 can be written as the product of the following numbers:
::36号可以写成以下数字的产物:
::36=1*36和1+36=3736=2*18和2+18=2036=3*12和3+12=1536=4*9和4+9=1336=6*6和6+6=12 这是正确的选择。The answer is .
::答案是 (x+6)(x+6) 。Review
::回顾Factor the following quadratic polynomials.
::乘以以下四边形多面体。-
::x2+10x+9 -
::x2+15x+50 -
::x2+10x+21 -
::x2+16x+48 -
::x2+14x+45 -
::x2+15x+50 -
::x2+22x+40 -
::x2+15x+56 -
::x2+2x+1 -
::x2+10x+24 -
::x2+17x+72 -
::x2+25x+150
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -