Section outline

  • lesson content

    The students of the local high school are selling potted plants to raise funds for their soccer team to buy new uniforms. Each six-pack of potted plants will sell for $6.50. A new sports store has agreed to match the money raised by the students as a donation to the team. The money raised by the students will be displayed on a poster-size Cartesian graph and presented to the sports store. How can the students create such a graph?
    ::当地高中学生正在出售陶瓷工厂,为足球队募集资金购买新制服。每六包陶瓷工厂将出售6.50美元。一家新的体育商店同意将学生筹集的钱与团队捐款相匹配。学生筹集的钱将张贴在一张规模为卡提斯的海报图表上,并展示给体育商店。学生如何制作这样的图表?

    In this concept, you will learn to use tables to graph functions.
    ::在此概念中,您将学会用表格来图形函数。

    Graphing Functions
    ::图图函数

    Consider the following Cartesian graph that represents the equation  y = 3 x + 4 .
    ::考虑以下表示y=3x+4方程式的笛卡尔图。

    lesson content

    The equation y = 3 x + 4  is written in function form and can be used to create a table of values that will make the statement of equality true. Remember an equation written in function form can be used to determine values for the output ‘ y ’ based on the different input ‘ x ’ values substituted into the equation.
    ::y= 3x+ 4 等式以函数形式写成, 可用于创建使平等声明真实化的数值表。 记住以函数形式写成的公式可以用来根据方程式中替代的不同输入 ' x ' 值来确定输出 'y ' 的值 。

    Using x -values of -4, -2, 0, 2 and 4, create a table of values to represent the equation y = 3 x + 4 .
    ::使用 4 - 2, 0, 2 和 4 的 x 值, 创建一个数值表, 以代表 y= 3x+ 4 的方程式 。

    x y
    -4 -8
    -2 -2
    0 4
    2 10
    4 16

    x = 4 y = 3 x + 4 y = 3 ( 4 ) + 4 Substitute  x = 4  into the equation . y = 12 + 4       Perform the multiplication to clear the parenthesis . y = 8 Simplify the right side of the equation .

    ::x4y=3x+4y=3(- 4)+4Subtitution x4 进入方程式。y12+4 执行乘法以清除括号 y8 简化方程式的右侧 。

    Use this process to calculate the values of the output variable for each of the given input values.
    ::使用此进程计算每个给定输入值输出变量的值 。

    Given input value  x = 2 y = 3 x + 4 y = 3 ( 2 ) + 4 y = 6 + 4 The output value is  y = 2

    ::给定输入值 x% 2y= 3x+4y= 3(-2)+4y @ 6+4 输出值为 y2

    Given input value  x = 0 y = 3 x + 4 y = 3 ( 0 ) + 4 y = 0 + 4 The output value is  y = 4

    ::给定输入值 x=0y=3x+4y=3( 0)+4y=0+4=4 输出值为y=4

    Given input value  x = 2 y = 3 x + 4 y = 3 ( 2 ) + 4 y = 6 + 4 The output value is  y = 10

    ::给定输入值 x=2y=3x+4y=3(2)+4y=6+4 输出值为y=10

    Given input value  x = 4 y = 3 x + 4 y = 3 ( 4 ) + 4 y = 12 + 4 The output value is  y = 16

    ::给定输入值 x=4y=3x+4y=3(4)+4y=12+4 输出值为y=16

    The input value associated with the corresponding output value can be written as an ordered pair ( x , y )  such that ( 4 , 8 ) , ( 2 , 2 ) , ( 0 , 8 ) , ( 2 , 10 )  and  ( 4 , 16 )  are the ordered pairs that can be plotted to represent the equation y = 3 x + 4 .
    ::与相应输出值相关的输入值可以写成一对定购对(x,y),这样(-4,8,(-2,-2),(2),(0),(8),(2),(2,10)和(4,16),即可以绘制成一对定购对以表示y=3x+4的公式。

    The ordered pairs are plotted on the Cartesian graph and are shown as red points. These points were then joined by a smooth straight line to draw the graph. The graph is a straight line such that the equation that produced this line was a linear function . The highest exponent of the variables of a linear function is one.
    ::定单对配方在笛卡尔图上绘制,以红点显示。然后将这些点用一条平滑的直线连接以绘制图形。该图是一条直线线,因此产生这条线的方程式是一个线性函数。线性函数变量的最大引号是一条。

    There are two special that produce a straight line graph. One of the straight lines is a vertical line that is parallel to the y -axis and the other is a horizontal line that is parallel to the x -axis.
    ::有两个特殊的直线图形。 其中一条直线是一条与 Y 轴平行的垂直线,另一条是一条与 X 轴平行的水平线。

    Let’s graph each of these special lines.
    ::让我们把这些特别的线条都图解一下。

    A line having x = 5  as its equation will pass through the point ( 5 , 0 )  such that it will be parallel to the y -axis.
    ::直线x=5, 其方程将穿过点( 5,0) , 从而与 Y 轴平行 。

    lesson content

    A line having y = 4  as its equation will pass through the point ( 0 , 4 )  such that it will be parallel to the x -axis.
    ::以 y=4 为方程式的线将穿过点( 0, 4), 使其与 X 轴平行 。

    lesson content

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about  the plotted plants and the soccer uniforms.
    ::早些时候,有人给了你一个问题 有关布置的植物和足球制服。

    The students need to create a poster size graph to show how much money was raised. How can the students create this graph?
    ::学生们需要创建海报大小图,以显示筹集了多少钱。 学生们如何创建这个图?

    They can create a table of values and plot the ordered pairs from the table.
    ::他们可以创建一个数值表,并从表中绘制一对定购的配对。

    First, write an equation in function form to represent the sale of potted plants.
    ::首先,以功能形式写一个方程,表示出售陶工厂。

    Let y  represent the money raises and let x  represent the number of potted plants sold.
    ::让x代表出售的陶工厂的数量。

    y = 6.50 x

    ::y=6. 50x

    Next, create a table of values and use the equation expressed in function form to calculate the output value for each input value.
    ::下一步,创建一个数值表,并使用以函数格式表示的方程式计算每个输入值的输出值。

    x y
    50  
    100  
    150  
    200  
    250  

    x = 50 y = 6.50 x y = 6.50 ( 50 ) Substitute  x = 50  into the equation . y = $ 325.00   Perform the multiplication to clear the parenthesis .

    ::x=50y = 6. 50xy = 6. 50( 50) 等式中的替代 x= 50.y = 325. 00 进行乘法以清除括号。

    Repeat the same process for the remaining input values.
    ::对剩余输入值重复相同的进程 。

    Given input value  x = 100 y = 6.50 x y = 6.50 ( 100 ) The output value is  y = $ 650.00

    ::给定输入值 x= 100y= 6. 50xy= 6. 50( 100) 输出值为y= 650.00

    Given input value  x = 150 y = 6.50 x y = 6.50 ( 150 ) The output value is  y = $ 975.00

    ::给定输入值 x=150y=6. 50xy=6. 50(150) 输出值为y= 975. 00

    Given input value  x = 200 y = 6.50 x y = 6.50 ( 200 ) The output value is  y = $ 1300.00

    ::给定输入值 x=200y=6. 50xy=6. 50(200) 输出值为y=1300.00

    Given input value  x = 250 y = 6.50 x y = 6.50 ( 250 ) The output value is  y = $ 1625.00

    ::给定输入值 x= 250y= 6. 50xy= 6. 50(250) 输出值为 y= 1625. 00

    Next, write the calculated ‘ y ’ values in the table.
    ::下一步,在表格中填入计算中的 'y ' 值。

    x y
    50 325
    100 650
    150 975
    200 1300
    250 1625

    Then, plot the ordered pairs shown in the table on a Cartesian grid.
    ::然后,在笛卡尔网格上绘制桌子上显示的两对定购的配对。

    lesson content

    The sports store will have to match the $1,625.00 raised by the students.
    ::体育商店将须与学生筹集的1 625.00美元相匹配。

    Example 2
    ::例2

    For the following linear function written in function form, complete the table of values and plot the graph.
    ::对于以函数形式写成的以下线性函数,填写数值表并绘制图表。

    y = 3 x 4

    ::y=3x- 4 y

    x y
    -3 -13
    -1 -7
    1 -1
    3 5
    5 11

    First, use the equation to calculate the output values ‘ y .’
    ::首先,使用方程式计算输出值“y.”

    x = 3 y = 3 x 4 y = 3 ( 3 ) 4 Substitute  x = 3  into the equation . y = 9 4   Perform the multiplication to clear the parenthesis . y = 13     Simplify the right side of the equation .

    ::x3y= 3x-4y= 3(-3)- 4Subtitution x3 进入方程式。 y9- 4 进行乘法以清除括号。 y13 简化方程式的右侧 。

    Repeat the process to calculate the values for the variable ‘ y .’ 
    ::重复计算变量“y.”的值的过程

    Given input value  x = 1 y = 3 x 4 y = 3 ( 1 ) 4 y = 3 4 The output value is  y = 7

    ::给定输入值 x% 1y= 3x- 4y= 3( - 1) - 4y_ 3- 4) 输出值为 y 7

    Given input value  x = 1 y = 3 x 4 y = 3 ( 1 ) 4 y = 3 4 The output value is  y = 1

    ::给定输入值 x=1y=3x- 4y=3(1)- 4y=3- 4y=3- 4 输出值为 y1

    Given input value  x = 3 y = 3 x 4 y = 3 ( 3 ) 4 y = 9 4 The output value is  y = 5

    ::给定输入值 x= 3y= 3x- 4y= 3(3)--4y= 9- 4y= 9- 4 输出值为 y= 5

    Given input value  x = 5 y = 3 x 4 y = 3 ( 5 ) 4 y = 15 4 The output value is  y = 11

    ::给定输入值 x= 5y= 3x- 4y= 3(5)- - 4y= 15- 4 输出值为 Y= 11

    Write the calculated ‘ y ’ values in the table.
    ::在表格中写入计算中的 'y ' 值。

    Plot the ordered pairs on the Cartesian grid and join the plotted points with a smooth, straight line.
    ::在笛卡尔网格上标定的一对配对,用平滑的直线加入绘图点。

    lesson content

    Example 3
    ::例3

    For the following linear function create a table of values and plot the points to draw the graph:
    ::对于以下线性函数,将创建一个数值表,并绘制绘制图形的点数:

    y = 2 x 3

    ::y=2x-3

    First, use the equation to calculate the output values ‘ y .’
    ::首先,使用方程式计算输出值“y.”

    x = 2 y = 2 x 3 y = 2 ( 2 ) 3 Substitute  x = 2  into the equation . y = 4 3   Perform the multiplication to clear the parenthesis . y = 7 Simplify the right side of the equation .

    ::x2y=2x-3y=2-2-3Subtitution x2 进入方程式。y4-3 执行乘法清除括号。y7 简化方程式的右侧。

    Repeat the process to calculate the values for the variable ‘ y .’ 
    ::重复计算变量“y.”的值的过程

    Given input value  x = 1 y = 2 x 3 y = 2 ( 1 ) 3 y = 2 3 The output value is  y = 5

    ::给定输入值 x% 1y= 2x- 3y= 2( - 1) - 3y}% 2 - 3 输出值为 y 5

    Given input value  x = 0 y = 2 x 3 y = 2 ( 0 ) 3 y = 0 3 The output value is  y = 3

    ::给定输入值 x=0y=2x-3y=2(0)--3y=0- 3 输出值为 y3

    Given input value  x = 1 y = 2 x 3 y = 2 ( 1 ) 3 y = 2 3 The output value is  y = 1

    ::给定输入值 x=1y=2x-3y=2(1)--3y=2- 3y=3 输出值为 y1

    Given input value  x = 2 y = 2 x 3 y = 2 ( 2 ) 3 y = 4 3 The output value is  y = 1

    ::给定输入值 x=2y=2x- 3y=2 (2)--3y=4- 3 输出值为y=1

    Write the calculated ‘ y ’ values in the table.
    ::在表格中写入计算中的 'y ' 值。

    x y
    -2 -7
    -1 -5
    0 -3
    1 -1
    2 1

    Plot the ordered pairs on the Cartesian grid and join the plotted points with a smooth, straight line.
    ::在笛卡尔网格上标定的一对配对,用平滑的直线加入绘图点。

    lesson content

    Example 4
    ::例4

    Plot the graph of the line having x = 2  as its equation.
    ::绘制以 x2 为其方程的线条图 。

    First, remember this is the graph of one of the special lines.
    ::首先,请记住,这是其中一条特别线的图示。

    Next, describe what the graph will look like.
    ::接下来,请描述图表的外观。

    A vertical line passing through the point ( 2 , 0 )  and parallel to the y -axis.
    ::垂直线穿过点(-2,0),与 Y 轴平行。

    Then, graph the line on the Cartesian grid.
    ::然后在笛卡尔电网上绘制线条图

    lesson content

    Example 5
    ::例5

    Plot the graph of the line having y = 3  as its equation.
    ::绘制以 y3 为方程的线条图 。

    First, remember this is the graph of one of the special lines.
    ::首先,请记住,这是其中一条特别线的图示。

    Next, describe what the graph will look like.
    ::接下来,请描述图表的外观。

    A horizontal line passing through the point ( 0 , 3 )  and parallel to the x -axis.
    ::水平线穿过点(0,-3),与 X 轴平行。

    Then, graph the line on the Cartesian grid.
    ::然后在笛卡尔电网上绘制线条图

    lesson content

    Review
    ::回顾

    Create a table of values for each equation and then graph it on the coordinate plane.
    ::创建每个方程式的数值表,然后在坐标平面上绘制图表。

    1. y = 2 x + 1
      ::y=2x+1 y=2x+1
    2. y = 3 x + 2
      ::y=3x+2 y=3x+2
    3. y = 4 x
      ::y4x
    4. y = 2 x
      ::y2x
    5. y = 3 x + 3
      ::y3x+3 y3x+3
    6. y = 2 x + 3
      ::y=2x+3 y=2x+3
    7. y = 3 x 2
      ::y=3x-2
    8. y = 8 x
      ::y8x
    9. y = 3 x + 1
      ::y=3x+1 y=3x+1
    10. y = 4 x
      ::y=4x y=4x
    11. y = 2 x + 2
      ::y2x+2
    12. y = 2 x 2
      ::y=2x-2
    13. y = x 1
      ::y=x-1
    14. x = 4
      ::x=4x=4
    15. y = 2
      ::y2

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。