Section outline

  • lesson content
     

    A condominium complex charges $185 per month for the homeowners’ association fee. The rates can rise every year because of inflation but they promise not to raise the rates more than 10% each year. Keep in mind, though, that if they raise the rate by 10% the first year, the second year is now more expensive. If they raise the maximum again, they are increasing the original $185 plus the first year’s adjustment by 10%. Graph the situation for 10 years.
    ::公寓综合体每月收费185美元,以支付房主协会费。 利率可以因通货膨胀而逐年上涨,但保证利率不会每年提高10 % 。 但是,记住,如果第一年将利率提高10 % , 第二年现在更昂贵。 如果他们再次提高最高利率,则将原来的185美元加第一年的调整增加10 % 。 分析10年的情况。

    How much could the homeowners’ fee be in ten years? Use the function f = 185 × 1.1 t  where f  is the fee after  t  years.
    ::10年内房主的收费能有多少?使用这个功能f=185x1.1t,f是年之后的收费。

    In this concept, you will learn to distinguish between and .
    ::在这一概念中,你会学会区分和区分。

    Exponential Growth and Decay
    ::指数增长和衰减

    Sometimes you will need to identify whether a function is an exponential function . If your function can be written in the form y = a b x , where a  and b  are constants, a 0 , b > 0  , and b 1  , then it must be exponential. In quadratic equations, your functions were always to the 2 nd power. In , the exponent is a variable . Their graphs will have a characteristic curve either upward or downward.
    ::有时您需要确定函数是否是一个指数函数。 如果您的函数可以以 y=abx 的形式写成, 其中 a和 b 是常数, a0, b>0, 和 b1, 那么它必须是指数。 在二次方程式中, 您的函数总是在第二倍。 在 中, 引号是一个变量。 它们的图表将有一个向上或向下的特性曲线 。

    Therefore the function  c = 4 × 10 a  is an exponential function, but   y = 6 × 0 x  is not because b 1 .
    ::因此,函数 c=4x10a 是一个指数函数,但 y=6x0x 不是因为 b1 。

    In some cases with exponential functions, as the x  value increased, the y  value increased, too. This was a direct relationship known as exponential growth . As the x  value increases, the y  value grows at a very fast rate!
    ::在某些具有指数函数的情况下, 随着 x 值的增加, y 值也增加了。 这是直接的关系, 被称为指数增长 。 随着 x 值的增加, y 值以非常快的速度增长 !

    In other cases, as the x  value increased, the y  value decreased. This relationship is an inverse relationship known as exponential decay . The graphs of these functions are opposites, reflected on the y -axis.
    ::在其他情况下,随着 x 值的增加, Y 值下降。 此关系是一种反向关系, 被称为指数衰减。 这些函数的图形是相反的, 反映在 Y 轴上 。

    lesson content
     

    lesson content

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about  the rising condominium fees. You need to determine how much the homeowners’ fee will be in ten years using the function f = 185 × 1.1 t  where f  is the fee after t  years.
    ::早些时候,您曾遇到有关公寓费上涨的问题。 您需要使用 F=185x1.1t 的功能来决定十年内房主费的多少, F 是 T 年之后的f 收费 。

    First, make a table of values for the function f = 185 × 1.1 x  .
    ::首先,绘制函数 f=185x1.1x 的值表。

      t 0 1 2 3 4 5 6 7 8
      f 185 203.50 223.85 246.24 270.86 297.94 327.74 360.51 396.56

    Next, graph the function.
    ::下一位, 绘制函数图 。

    lesson content

    Example 2
    ::例2

    Does the following function represent an exponential function? Graph the function.
    ::以下函数是否代表指数函数?图形显示函数。

    y = 3 × 1 x

    ::y=3x1x y=3x1x

    First, answer the question.
    ::首先,回答问题。

    No, this function does not represent an exponential function because the b  value is 1.
    ::否,此函数不代表指数函数,因为 b 值为 1。

    Next, graph the function.
    ::下一位, 绘制函数图 。

    lesson content

    Example 3
    ::例3

    Graph the function y = ( 1 2 ) x  and tell whether it will represent exponential growth or decay.
    ::绘制函数y=( 12) x 的图, 并显示它代表指数增长还是衰变 。

    First, graph the function.
    ::首先,绘制函数图。

    lesson content

    Next, answer the question.
    ::下一个,回答问题。

    From the graph, the function y = ( 1 2 ) x  represents exponential decay.
    ::从图形中,函数 y=( 12)x 表示指数衰减。

    Example 4
    ::例4

    Graph the function y = 4 x  and tell whether it represents exponential growth or decay.
    ::绘制 y= 4x 函数图,并显示该函数代表指数增长还是衰变。

    First, graph the function.

    lesson content

    ::首先,绘制函数图。

    Next, answer the question.
    ::下一个,回答问题。

    From the graph, the function y = 4 x  represents exponential growth.
    ::从图中,函数y=4x代表指数增长。

    Example 5
    ::例5

    Graph the function y = 5 x  and tell whether it represents exponential growth or decay.
    ::绘制 y= 5x 函数图,并显示该函数代表指数增长还是衰变。

    First, graph the function.

    lesson content

    ::首先,绘制函数图。

    Next, answer the question.
    ::下一个,回答问题。

    From the graph, the function y = 5 x  represents exponential growth.
    ::从图中,函数 y=5x 表示指数增长。

    Review
    ::回顾

    Graph each function. Then say whether it represents economic growth or decay.
    ::每个函数图。 然后说明它是代表经济增长还是代表衰退。

    1. y = 4 x
      ::y=4x y=4x
    2. y = ( 1 2 ) x
      ::y=( 12) x
    3. y = ( 1 3 ) x
      ::y=( 13) x
    4. y = 7 x
      ::y=7x y=7x
    5. y = 5 x
      ::y=5x y=5x
    6. y = 2 x
      ::y=2x y=2x
    7. y = ( 1 4 ) x
      ::y=( 14) x
    8. y = ( 3 4 ) x
      ::y=( 34)x
    9. y = 6 x
      ::y=6x y=6x
    10. y = 11 x
      ::y=11x y=11x
    11. y = 9 x
      ::y=9x y=9x
    12. y = ( 1 8 ) x
      ::y=( 18) x
    13.   y = 12 x
      ::y=12x y=12x
    14. y = ( 2 5 ) x
      ::y=( 25) x
    15. y = 13 x
      ::y=13x y=13x

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。