Section outline

  • Circles
    ::圆环

    A circle is the set of all points in the plane that are the same distance away from a specific point , called the center . The center of the circle below is point A . We call this circle “circle A ,” and it is labeled A .
    ::一个圆是平面上所有点的集合,这些点与特定点的距离相同,称为中点。下面圆的中心是 A 点。我们称之为“ A 圈 圈 ” , 它被标为 A 。

    lesson content

    Important Circle Parts
    ::重要圆环部件

    Radius : The distance from the center of the circle to its outer rim.
    ::半径:从圆的中心到其外边缘的距离。

    Chord : A line segment whose endpoints are on a circle.
    ::和弦: 一条线段, 其终点在圆上 。

    Diameter : A chord that passes through the center of the circle. The length of a diameter is two times the length of a radius.
    ::直径是半径的两倍。

    Secant : A line that intersects a circle in two points.
    ::secant: 一条将圆交错为两点的线。

    Tangent : A line that intersects a circle in exactly one point.
    ::切线:一线将圆交错在一个点上。

    Point of Tangency : The point where a tangent line touches the circle.
    ::切切点: 相切线接触圆圈的点 。

    lesson content

    The tangent ray T P and tangent segment ¯ T P are also called tangents.
    ::相切的射线“TP”和相切部分“TP”也被称为相切。

    Tangent Circles : Two or more circles that intersect at one point.
    ::切形圆形:两个或两个以上的圆形在一个点上交叉。

    Concentric Circles : Two or more circles that have the same center, but different radii.
    ::共心圆圈:两个或两个以上的圆圈具有相同的中心,但不同的弧度。

    Congruent Circles : Two or more circles with the same radius, but different centers.
    ::共圆:两个或两个以上的圆,半径相同,但中心不同。

    lesson content

    What if you drew a line through a circle from one side to the other that does not pass through the center? What if you drew a line outside a circle that touched the circle at one point? What would you call these lines you drew?
    ::万一您从一面到另一面画一条线, 从一面到另一面画一条线, 却不通过中间线呢? 如果您在一端触碰圆的圆外画一条线呢? 您如何称呼这些线?

    Examples
    ::实例

    Example 1
    ::例1

    Find the parts of A that best fit each description.
    ::找到ZAA最符合每个描述的部分。

    lesson content

    1. A radius
      ::A半径

      ¯ H A or ¯ A F
    ::# # 或 # # # # # h # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

    1. A chord
      ::和弦和弦

      ¯ C D ,   ¯ H F , or ¯ D G
    ::d, hH, 或

    1. A tangent line
      ::一条正切线

      B J
    ::# BJ # # BJ # # BJ # # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ #

    1. A point of tangency
      ::某一具体点

     Point H
    ::H点点

    1. A diameter
      ::A直径

      ¯ H F
    ::- HF - HF - - - HF - - - - - - - - - - - - - - - - - - - - - - - -

    1. A secant
      ::A 秒数

      B D
    ::{BD_BD_BD_BD_BD_BD_BD_BD_BD_BD_BD_BD_BD

    Example 2
    ::例2

    Draw an example of how two circles can intersect with no, one and two points of intersection . You will make three separate drawings.
    ::绘制一个示例, 显示两个圆圈如何交叉, 交叉点为空、 1 和 2 个。 您将绘制三个独立的图纸 。

    Example 3
    ::例3

    Determine if any of the following circles are congruent .
    ::确定以下圆圈中是否有相同圆。

    From each center, count the units to the outer rim of the circle. It is easiest to count vertically or horizontally. Doing this, we have:
    ::从每个中心, 从每个中心, 计数单位到圆的外边缘。 很容易垂直或水平地计数。 这样做, 我们得到 :

    Radius of   A = 3   u n i t s Radius of   B = 4   u n i t s Radius of   C = 3   u n i t s


    ::A=3 单位Radius= B=4 单位Radius= C=3 单位

    From these measurements, we see that A C .
    ::从这些测量中,我们看到了AAC。

    Notice the circles are congruent. The lengths of the radii are equal.
    ::注意圆圈是相同的 弧度长度相等

    Example 4
    ::例4

    Is it possible to have a line that intersects a circle three times? If so, draw one. If not, explain.
    ::是否可能有一个横线将圆交叉三次? 如果是,请绘制一条。如果没有,请解释。

    It is not possible. By definition, all lines are straight . The maximum number of times a line can intersect a circle is twice.
    ::不可能。 根据定义, 所有的线条都是直线。 一条线最多能交叉圆的倍数是两次 。

    Example 5
    ::例5

    Are all circles similar ?
    ::所有圆圈都相似吗?

    Yes. All circles are the same shape, but not necessarily the same size, so they are similar.
    ::是的,所有圆圈的形状都一样,但不一定大小相同,因此它们相似。

    Review
    ::回顾

    Determine which term best describes each of the following parts of P .
    ::确定哪个术语最能说明 " +P " 的以下每一部分。

    lesson content

    1. ¯ K G
      :sadK) (K)
    2. F H
      ::芬 芬 华
    3. ¯ K H
      :sadKH)
    4. E
      ::英 英 英
    5. B K
      ::# BK # # BK # # BK # # BK #
    6. C F
      ::CF CF CF CF CF CF CF CF CF CF CF CF CF CF
    7. A
      ::A A A
    8. ¯ J G
      ::# 城 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
    9. What is the longest chord in any circle?
      ::圆圈中最长的和弦是什么?

    Use the graph below to answer the following questions.
    ::使用下图回答下列问题。

    1. Find the radius of each circle.
      ::查找每个圆的半径。
    2. Are any circles congruent? How do you know?
      ::圆圈是否一致?
    3. C and E are externally tangent. What is C E ?
      ::C和E是外部相切的 CE是什么?
    4. Find the equation of ¯ C E .
      lesson content

      ::找到CE的方程式

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源