9.1 圆圈部分
Section outline
-
Circles
::圆环A circle is the set of all points in the plane that are the same distance away from a specific point , called the center . The center of the circle below is point A . We call this circle “circle A ,” and it is labeled ⨀ A .
::一个圆是平面上所有点的集合,这些点与特定点的距离相同,称为中点。下面圆的中心是 A 点。我们称之为“ A 圈 圈 ” , 它被标为 A 。Important Circle Parts
::重要圆环部件Radius : The distance from the center of the circle to its outer rim.
::半径:从圆的中心到其外边缘的距离。Chord : A line segment whose endpoints are on a circle.
::和弦: 一条线段, 其终点在圆上 。Diameter : A chord that passes through the center of the circle. The length of a diameter is two times the length of a radius.
::直径是半径的两倍。Secant : A line that intersects a circle in two points.
::secant: 一条将圆交错为两点的线。Tangent : A line that intersects a circle in exactly one point.
::切线:一线将圆交错在一个点上。Point of Tangency : The point where a tangent line touches the circle.
::切切点: 相切线接触圆圈的点 。The tangent ray → T P and tangent segment ¯ T P are also called tangents.
::相切的射线“TP”和相切部分“TP”也被称为相切。Tangent Circles : Two or more circles that intersect at one point.
::切形圆形:两个或两个以上的圆形在一个点上交叉。Concentric Circles : Two or more circles that have the same center, but different radii.
::共心圆圈:两个或两个以上的圆圈具有相同的中心,但不同的弧度。Congruent Circles : Two or more circles with the same radius, but different centers.
::共圆:两个或两个以上的圆,半径相同,但中心不同。What if you drew a line through a circle from one side to the other that does not pass through the center? What if you drew a line outside a circle that touched the circle at one point? What would you call these lines you drew?
::万一您从一面到另一面画一条线, 从一面到另一面画一条线, 却不通过中间线呢? 如果您在一端触碰圆的圆外画一条线呢? 您如何称呼这些线?Examples
::实例Example 1
::例1Find the parts of ⨀ A that best fit each description.
::找到ZAA最符合每个描述的部分。-
A radius
::A半径
¯ H A or ¯ A F
::# # 或 # # # # # h # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #-
A chord
::和弦和弦
¯ C D , ¯ H F , or ¯ D G
::d, hH, 或-
A tangent line
::一条正切线
↔ B J
::# BJ # # BJ # # BJ # # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ # BJ #-
A point of tangency
::某一具体点
Point H
::H点点-
A diameter
::A直径
¯ H F
::- HF - HF - - - HF - - - - - - - - - - - - - - - - - - - - - - - --
A secant
::A 秒数
↔ B D
::{BD_BD_BD_BD_BD_BD_BD_BD_BD_BD_BD_BD_BDExample 2
::例2Draw an example of how two circles can intersect with no, one and two points of intersection . You will make three separate drawings.
::绘制一个示例, 显示两个圆圈如何交叉, 交叉点为空、 1 和 2 个。 您将绘制三个独立的图纸 。Example 3
::例3Determine if any of the following circles are congruent .
::确定以下圆圈中是否有相同圆。From each center, count the units to the outer rim of the circle. It is easiest to count vertically or horizontally. Doing this, we have:
::从每个中心, 从每个中心, 计数单位到圆的外边缘。 很容易垂直或水平地计数。 这样做, 我们得到 :Radius of ⨀ A = 3 u n i t s Radius of ⨀ B = 4 u n i t s Radius of ⨀ C = 3 u n i t s
::A=3 单位Radius= B=4 单位Radius= C=3 单位From these measurements, we see that ⨀ A ≅ ⨀ C .
::从这些测量中,我们看到了AAC。Notice the circles are congruent. The lengths of the radii are equal.
::注意圆圈是相同的 弧度长度相等Example 4
::例4Is it possible to have a line that intersects a circle three times? If so, draw one. If not, explain.
::是否可能有一个横线将圆交叉三次? 如果是,请绘制一条。如果没有,请解释。It is not possible. By definition, all lines are straight . The maximum number of times a line can intersect a circle is twice.
::不可能。 根据定义, 所有的线条都是直线。 一条线最多能交叉圆的倍数是两次 。Example 5
::例5Are all circles similar ?
::所有圆圈都相似吗?Yes. All circles are the same shape, but not necessarily the same size, so they are similar.
::是的,所有圆圈的形状都一样,但不一定大小相同,因此它们相似。Review
::回顾Determine which term best describes each of the following parts of ⨀ P .
::确定哪个术语最能说明 " +P " 的以下每一部分。-
¯
K
G
:K) (K)
-
↔
F
H
::芬 芬 华 -
¯
K
H
:KH)
-
E
::英 英 英 -
↔
B
K
::# BK # # BK # # BK # # BK # -
↔
C
F
::CF CF CF CF CF CF CF CF CF CF CF CF CF CF -
A
::A A A -
¯
J
G
::# 城 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # -
What is the longest chord in any circle?
::圆圈中最长的和弦是什么?
Use the graph below to answer the following questions.
::使用下图回答下列问题。-
Find the radius of each circle.
::查找每个圆的半径。 -
Are any circles congruent? How do you know?
::圆圈是否一致? -
⨀
C
and
⨀
E
are externally tangent. What is
C
E
?
::C和E是外部相切的 CE是什么? -
Find the equation of
¯
C
E
.
::找到CE的方程式
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -
A radius