Section outline

  • The Hiking Club is buying nuts to make trail mix for a fundraiser. Three pounds of almonds and two pounds of cashews cost a total of $36. Three pounds of cashews and two pounds of almonds cost a total of $39. Is ( a , c ) = ($6, $9) a solution to this system?
    ::三磅杏仁和两磅腰果总共需要36美元。 三磅腰果和两磅杏仁总共需要39美元。 (a, c) = (6, 9) 是这个系统的解决办法吗?

    Solution to a System of Linear Equations
    ::线线性等式系统解决方案

    A system of linear equations consists of the equations of two lines. The solution to a system of linear equations is the point which lies on both lines. In other words, the solution is the point where the two lines intersect. To verify whether a point is a solution to a system or not, we will either determine whether it is the point of intersection of two lines on a graph or we will determine whether or not the point lies on both lines algebraically.
    ::线性方程式系统由两行的方程式组成。 线性方程式系统的解决方案是两行的点。 换句话说, 解决方案是两行交叉的点。 要验证一个点是否是一个系统的解决方案, 我们要么确定它是否是一个图形上两行的交叉点, 要么我们确定该点是否位于两行的代数线上。

    Let's determine whether the given points are a solution to the systems of equations below.
    ::让我们来决定给定的点数是否是以下方程式系统的解决办法。

    1. Is the point (5, -2) the solution of the system of linear equations shown in the graph below?
      ::点(5, 2)是否是下图所示线性方程式系统的解决办法?

    lesson content

    Yes, the lines intersect at the point (5, -2) so it is the solution to the system.
    ::是的,线在点(5,2)交叉,所以这是系统的解决办法。

    1. Is the point (-3, 4) the solution to the system given below?
      ::要点(-3,4)是否是下文所述系统的解决办法?

    2 x 3 y = 18 x + 2 y = 6

    ::2 - 3y18x+2y=6

    No, (-3, 4) is not the solution. If we replace the x and y in each equation with -3 and 4 respectively, only the first equation is true. The point is not on the second line; therefore it is not the solution to the system.
    ::否, (3, 4) 不是解决方案。 如果我们将每个方程中的 x 和 y 分别替换为 - 3 和 4, 只有第一个方程是真实的。 点不在第二行, 因此不是系统的解决办法 。

    Now, let's find the solution to the system below.
    ::现在,让我们找出下面系统的解决办法。

    x = 5 3 x 2 y = 25

    ::x=53x--2y=25

    Because the first line in the system is vertical , we already know the x -value of the solution, x = 5 . Plugging this into the second equation, we can solve for y .
    ::因为系统中的第一行是垂直的, 我们已经知道溶液的 X 值, x= 5 。 将它插进第二个方程, 我们可以解决y 。

    3 ( 5 ) 2 y = 25 15 2 y = 25 2 y = 10 y = 5

    ::3(5)-2y=2515-2y=25-2y=10y=10y5

    The solution is (5, -5). Check your solution to make sure it's correct.
    ::答案是 (5,5,5) 检查你的解决方案以确保它是正确的 。

    3 ( 5 ) 2 ( 5 ) = 25 15 + 10 = 25

    You can also solve systems where one line is horizontal in this manner.
    ::您也可以用这种方式解析一条线是水平线的系统 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked if (a, c) = ($6, $9) is a solution to the system of equations .
    ::早些时候,有人问你(a, c) = (6, 9) 是否是方程式系统的解决办法。

    The system of linear equations represented by this situation is:
    ::以这种情况为代表的线性方程式系统是:

    3 a + 2 c = 36 3 c + 2 a = 39

    ::3a+2c=363c+2a=39

    If we plug in $6 for a and $9 for c , both equations are true. Therefore ($6, $9) is a solution to the system.
    ::如果我们用6美元加1美元和9美元加C,这两个方程式都是真实的。因此(6,9美元)是系统的解决办法。

    Example 2
    ::例2

    Is the point (-2, 1) the solution to the system shown below?
    ::要点(-2,1)是否是下文所述系统的解决办法?

    lesson content

    No, (-2, 1) is not the solution. The solution is where the two lines intersect which is the point (-3, 1).
    ::否, (-2, 1) 不是解决办法, 解决办法是两条线相交之处, 也就是点( -3, 1) 。

    Example 3
    ::例3

    Verify algebraically that (6, -1) is the solution to the system shown below.
    ::校验代数(6,-1)是以下系统的解决办法。

    3 x 4 y = 22 2 x + 5 y = 7

    ::3x-4y=222x+5y=7

    By replacing x and y in both equations with 6 and -1 respectively (shown below), we can verify that the point (6, -1) satisfies both equations and thus lies on both lines.
    ::通过将两个方程中的x和y分别替换为6和-1(如下文所示),我们可以核实点(6,-1)满足了两个方程,因此是两个线的。

    3 ( 6 ) 4 ( 1 ) = 18 + 4 = 22 2 ( 6 ) + 5 ( 1 ) = 12 5 = 7

    Example 4
    ::例4

    Explain why the point (3, 7) is the solution to the system:
    ::解释为何系统的解决办法(3、7)是:

    y = 7 x = 3

    ::y=7x=3 y=7x=3

    The horizontal line is the line containing all points where the y coordinate 7. The vertical line is the line containing all points where the x coordinate 3. Thus, the point (3, 7) lies on both lines and is the solution to the system.
    ::7. 垂直线是包含X-坐标3的所有点的线条。 因此,两条线上都有点(3、7),是系统的解决办法。

    Review
    ::回顾

    Match the solutions with their systems.
    ::解决方案与其系统匹配。

    1. (1, 2)
    1. (2, 1)
    1. (-1, 2)
    1. (-1, -2)

    Determine whether each ordered pair represents the solution to the given system.
    ::确定每对定购夫妇是否代表给定系统的解决方案。

    1. .
    4 x + 3 y = 12 5 x + 2 y = 1 ;   ( 3 , 8 )
    1. .
    3 x y = 17 2 x + 3 y = 5 ;   ( 5 , 2 )
    1. .
    7 x 9 y = 7 x + y = 1 ;   ( 1 , 0 )
    1. .
    x + y = 4 x y = 4 ;   ( 5 , 9 )
    1. .
    x = 11 y = 10 ;   ( 11 , 10 )
    1. .
    x + 3 y = 0 y = 5 ;   ( 15 , 5 )

    Find the solution to each system below.
    ::为下面的每个系统找出解决办法。

    1. .
    x = 2 y = 4
    1. .
    y = 1 4 x y = 13
    1. .
    x = 7 y = 6
    1. .
    x = 2 8 x + 3 y = 11
    1. Describe the solution to a system of linear equations.
      ::描述线性方程式系统的解决方案 。
    2. Can you think of why a linear system of two equations would not have a unique solution?
      ::你能想到两个方程式的线性系统 为何没有独特的解决方案吗?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。