当领导系数值不等于 1 时乘数
Section outline
-
The area of a square is . What are the dimensions of the square?
::方形区域为 9x2+24x+16。 方形的尺寸是多少?Factoring Quadratic Functions
::计算二次函数When the term , the coefficient of the term in a quadratic function in the form is greater than one, factoring it may be a bit tricky . This is because the term is the result of multiplying the coefficients of the terms from the source binomials, so you need to identify the different coefficients that are factors of
::当一个词时, 方形 x2+bx+c 的二次函数中的 x2 术语的系数大于一个时, 乘以它可能有点困难。 这是因为该词是源二元性乘以 x 术语的系数的结果, 所以您需要确定一个因素的不同系数 。As an introduction, consider FOIL-ing two binomials when the coefficients in front of the terms are not 1:
::作为导言,在xx期之前的系数不是1时,考虑FOIL确定两个二元论:Multiply, using the FOIL method: .
::乘数,使用FOIL方法: (3x-5)(2x+1)。FIRST:
::第一: 3x% 2x=6x2OUTSIDE:
::外部: 3x%1=3xINSIDE:
::内部: - 52x=- 10xLAST:
::末期: -51=5Combining all the terms together, you get:
::将所有术语合并后,您可以得到: 6x2+3x- 10x- 5= 6x2- 7x- 5。Now, try working backwards and factor a trinomial with to get two factors. Remember, you can always check your work by multiplying the final factors together.
::现在, 尝试向后工作, 并用一个 > 1 来乘以三边数, 以获得两个因素 。 记住, 您总是可以通过将最终因素乘以一起来检查您的工作 。Factor
::6x2-x-2因数This is a factorable trinomial. When there is a coefficient, or number in front of, , you must follow all the steps you are familiar with to factor . M ultiply together and and then find the two numbers whose product is and sum is . One way to organize this information is to draw a large X with in the top opening , and in the bottom one:
::这是一个可因数三角。 当 x2 前面有一个系数或数字时, 您必须跟随您熟悉的参数的所有步骤。 乘以 a 和 c, 从 x2+bx+c 乘以 a 和 c, 然后找到两个数字, 其产品为 ac 和 和 和 b。 组织此信息的方法之一是在顶部开口绘制一个大 X 和 b , 在底部绘制 a 和 a :For the side sections, you are looking for the two factors of (12, in this case) that sum to be equal to
::对于侧侧部分,您正在寻找ac(12,此处指12)等值于b的两个系数。Factors Sum -1, 12 11 1, -12 -11 2, -6 -4 -2, 6 4 -3, 4 1 The factors that work are 3 and -4. Now, take these factors and rewrite the term, expanded as
::起作用的因素是 3 和 - 4。 现在, 以这些因素来重写- x 术语, 扩展为 - 4x+3x :
::6x2-x-2 6x2-4x+3x-2Next, group the first two terms together and the last two terms together and pull out any common factors.
::接下来,将前两个术语组合在一起,最后两个术语组合在一起,并找出任何共同因素。
:6x2-4x)+(3x-2)2x(3x-2)+1(3x-2)
What is in the parenthesis is the same . We now have two terms that both have as factor. Pull this factor out.
::括号中的内容是一样的。 我们现在有两个条件, 两者都具有( 3x-2) 系数。 拔出这个系数 。The factors of are . You can FOIL these to check your answer.
::6x2-x-2 的因数是 (3x-2)(2x+1) 。您可查看这些因数以查看您的答复 。Now, let's factor .
::现在,让我们来考虑乘数4x2+8x-5。Let’s make the steps we followed in the previous problem a little more concise.
::让我们让我们在前一个问题上所遵循的步骤更简洁一点。Step 1: Find and the factors of this number that add up to .
::第1步:查找 ac 和该数字中与 b 相加的系数。The factors of -20 that add up to 8 are 10 and -2.
::======================================================================================================================================================Step 2: Rewrite the trinomial with the term expanded, using the two factors from Step 1.
::第2步:利用第1步的两个因素,以扩大的x-期重写三角关系。
::4x2+8x-5 4x2+10x-2x-5Step 3: Group the first two and second two terms together, find the GCF and factor again.
::第3步:将前两个和第二个两个任期组合起来,再次发现绿色气候基金和因素。
:4x2+10x)+(-2x-5)2x(2x+5)-2x-2x+5)-1(2x+5)(2x+5)(2x+5)(2x-1)
Alternate Method : What happens if we list before in Step 2?
::替代方法:如果我们在步骤2中列出-2x在10x之前出现什么情况?
::4x2-2x+10x-5(4x2-2-2x)(10x-5)2x(2x-1)+5(2x-1)-2x-1(2x-1)-1(2x-1)-2x-1(2x+5)This tells us it does not matter which term we list first in Step 2 above.
::这告诉我们,我们在上文步骤2中首先列出哪个x-期并不重要。Let's factor .
::12x2 -22x -20乘以12x2 -22x -20Let’s use the steps from the previous problem , but we are going to add an additional step at the beginning.
::让我们从上一个问题中走一步, 但我们在开始的时候还要再加一步。Step 1: Look for any common factors. Pull out the GCF of all three terms, if there is one.
::第1步:寻找任何共同因素。如果存在一个条件,则取消全球合作框架的所有三个条件。
::12x2-22x-20=2(6x2-11x-10)This will make it much easier for you to factor what is inside the parenthesis.
::这将使您更容易计算括号内的内容。Step 2: Using what is inside the parenthesis, find and determine the factors that add up to
::第2步:使用括号内的内容,找到 ac 并确定构成 b 的因素。The factors of -60 that add up to -11 are -15 and 4.
::总计为 -11的 -60 系数为 -15 和 4。Step 3: Rewrite the trinomial with the term expanded, using the two factors from Step 2.
::步骤3:利用从步骤2得出的两个因素,以扩大的x期重写三边协议。
::2(6x2-11x-10)(2-6x2-15x+4x-10)Step 4: Group the first two and second two terms together, find the GCF and factor again.
::第4步:将前两个和第二个两个任期组合起来,再次发现绿色气候基金和因素。
::2(6x2-15x+4x-10)2[(6x2-15x)+(4x-10)]2[3x(2x-2x-5)+2(2x-2x-5)]2 [2x-5(3x+2)Examples
::实例Example 1
::例1Earlier, you were asked to find the dimensions of the square.
::早些时候,你被要求找到广场的方位The dimensions of a square are its length and its width, so we need to factor the area .
::方形的尺寸是其长度和宽度, 所以我们需要将区域 9x2+24x+16 乘以 。We need to multiply together and (from ) and then find the two numbers whose product is and whose sum is .
::我们需要将a和c(从x2+bx+c)乘以1和c(从x2+bx+c),然后找到其产品为ac的两个数字,其总和为b。Now we can see that we need the two factors of 144 that also add up to 24. Testing the possibilities, we find that and .
::现在我们可以看到,我们需要144这两个因素,这些因素加起来达到24个。 测试可能性,我们发现1212=144和12+12=24。Now, take these factors and rewrite the term expanded using 12 and 12.
::采用这些因素,重写使用12和12扩大的x-期。
::9x2+24x+16 9x2+12x+12x+16Next, group the first two terms together and the last two terms together and pull out any common factors.
::接下来,将前两个术语组合在一起,最后两个术语组合在一起,并找出任何共同因素。
:9x2+12x)+(12x+16)3x(3x+4)+4(3x+4)
We now have two terms that both have as factor. Pull this factor out.
::我们现在有两个条件,两个条件都以(3x+4)为因数,拉出这一因数。The factors of are , which are also the dimensions of the square.
::9x2+24x+16的因数是(3x+4)(3x+4),这些因数也是方形的尺寸。Example 2
::例2Multiply .
::乘以 (4x-3)(3x+5)。FOIL:
::FIL: (4x-3 (3x+5)= 12x2+20x-9x-15=12x2+11x-15)Example 3
::例3Factor the following quadratic, if possible.
::如果可能,则以下列二次方位因数为因数。
::15x2 - 4x - 3Use the steps from the examples above. There is no GCF, so we can find the factors of that add up to .
::使用上述例子中的步骤。 没有绿色气候基金, 所以我们可以找到 ac 的系数, 加到 b 。The factors of -45 that add up to -4 are -9 and 5.
::15345 乘以 -4的-45系数为 -9和5。
::15x2-4x-3(15x2-9x)+(5x-3)3x(5x-3)+1(5x-3)(5x-3)(3x+1)Example 4
::例4Factor the following quadratic, if possible.
::如果可能,则以下列二次方位因数为因数。
::3x2+6x-12has a GCF of 3. Pulling this out, we have . There is no number in front of , so we see if there are any factors of -6 that add up to 2. There are not, so this trinomial is not factorable.
::3x2+6x-12全球合作框架为3。 拔出这个系数,我们有3(x2+2x-6)x2前面没有数字,所以我们看看有没有6-6因素加起来等于2。 没有,因此三重因素是不可考虑的。Example 5
::例5Factor the following quadratic, if possible.
::如果可能,则以下列二次方位因数为因数。
::24x2-30x-9also has a GCF of 3. Pulling this out, we have . . The factors of -24 than add up to -10 are -12 and 2.
::24x2-30x-9也有3个全球合作框架。 解决这个问题,我们有3(8x2-10x-3) ac24。 与-10相加的24个因素是 -12和2。
::3(3)8x2-10x-3)3[(8x2-12x)+(2x-3)]3[(4x(2x-3)+1(2x-3)]3(2x-3)(4x+1)Example 6
::例6Factor the following quadratic, if possible.
::如果可能,则以下列二次方位因数为因数。
::4x2+4x-48. has a GCF of 4. Pulling this out, we have . This trinomial does not have a number in front of , so we can use the shortcut we are familiar with . What are the factors of -12 that add up to 1?
::4x2+4x- 48。 4x2+4x- 48。 全球合作框架为4:拉出来, 我们有 4(x2+x-12) 12。 这个三角体在 x2 前面没有数字, 所以我们可以使用我们熟悉的捷径。 12 因素加到 1 是什么?
::4(x2+x-12)4(x+4)(x-3)Review
::回顾Multiply the following expressions.
::乘以下列表达式。-
:2x-1(x+5))
-
:3x+2)(2x-3)
-
:4x+1)(4x-1)
Factor the following quadratic equations, if possible. If they cannot be factored, write not factorable . Don’t forget to look for any GCFs first.
::如果可能的话, 则以下列二次方程为因数。 如果无法计算的话, 请写不可计算。 不要忘记先寻找任何 GFSP 。-
::5x2+18x+9 -
::6x2 - 21x -
::10x2-x-3 -
::3x2+2x-8 -
::4x2+8x+3 -
::12x2-12x-18 -
::16x2-6x-1 -
::5x2-35x+60 -
::2x2+7x+3 -
::3x2+3x+27 -
::8x2 - 14x - 4 -
::10x2+27x-9 -
::4x2+12x+9 -
::15x2+35x -
::6x2-19x+15 -
Factor
. What is
?
::乘以 x2 - 25。 什么是 b? -
Factor
. What is
? What types of numbers are
and
?
::9x2-16。b是什么?a和c是哪种数字?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -