Section outline

  • The area of a square is 9 x 2 + 24 x + 16 . What are the dimensions of the square? 
    ::方形区域为 9x2+24x+16。 方形的尺寸是多少?

    Factoring Quadratic Functions
    ::计算二次函数

    When the  a   term ,  the coefficient  of the x 2 term in a quadratic function in the form a x 2 + b x + c ,  is greater than one, factoring it may be a bit tricky . This is because the a  term is the result of multiplying the coefficients of the x   terms from the source binomials, so you need to identify the different coefficients that are factors of a .
    ::当一个词时, 方形 x2+bx+c 的二次函数中的 x2 术语的系数大于一个时, 乘以它可能有点困难。 这是因为该词是源二元性乘以 x 术语的系数的结果, 所以您需要确定一个因素的不同系数 。

    As an introduction, consider FOIL-ing two binomials when the coefficients in front of the x - terms are not 1:
    ::作为导言,在xx期之前的系数不是1时,考虑FOIL确定两个二元论:

    Multiply, using the FOIL method:  ( 3 x 5 ) ( 2 x + 1 ) .
    ::乘数,使用FOIL方法: (3x-5)(2x+1)。

    FIRST:    3 x 2 x = 6 x 2
    ::第一: 3x% 2x=6x2

    OUTSIDE:    3 x 1 = 3 x
    ::外部: 3x%1=3x

    INSIDE:    - 5 2 x = - 10 x
    ::内部: - 52x=- 10x

    LAST:    - 5 1 = - 5
    ::末期: -51=5

    Combining all the terms together, you get: 6 x 2 + 3 x 10 x 5 = 6 x 2 7 x 5.
    ::将所有术语合并后,您可以得到: 6x2+3x- 10x- 5= 6x2- 7x- 5。

    Now, try working backwards and factor a trinomial with a > 1  to get two factors. Remember, you can always check your work by multiplying the final factors together.
    ::现在, 尝试向后工作, 并用一个 > 1 来乘以三边数, 以获得两个因素 。 记住, 您总是可以通过将最终因素乘以一起来检查您的工作 。

    Factor 6 x 2 x 2
    ::6x2-x-2因数

    This is a factorable trinomial. When there is a coefficient, or number in front of,  x 2 , you must follow all the steps you are familiar with to factor . M ultiply together a and  c ,  from  a x 2 + b x + c ,  and then find the two numbers whose product is a c and sum is b One way to organize this information is to draw a large X with  b  in the top opening , and  a c  in the bottom one:
    ::这是一个可因数三角。 当 x2 前面有一个系数或数字时, 您必须跟随您熟悉的参数的所有步骤。 乘以 a 和 c, 从 x2+bx+c 乘以 a 和 c, 然后找到两个数字, 其产品为 ac 和 和 和 b。 组织此信息的方法之一是在顶部开口绘制一个大 X 和 b , 在底部绘制 a 和 a :

    lesson content

    For the side sections, you are looking for the two factors of  a c ,  (12, in this case) that sum to be equal to  b .
    ::对于侧侧部分,您正在寻找ac(12,此处指12)等值于b的两个系数。

    Factors Sum
    -1, 12 11
    1, -12 -11
    2, -6 -4
    -2, 6 4
    3 ,   - 4 - 1
    -3, 4 1

    The factors that work are 3 and -4. Now, take these factors and rewrite the x  term, expanded as  - 4 x + 3 x :
    ::起作用的因素是 3 和 - 4。 现在, 以这些因素来重写- x 术语, 扩展为 - 4x+3x :

      6 x 2 x 2     6 x 2 4 x + 3 x 2

    ::6x2-x-2 6x2-4x+3x-2

    Next, group the first two terms together and the last two terms together and pull out any common factors.
    ::接下来,将前两个术语组合在一起,最后两个术语组合在一起,并找出任何共同因素。

    ( 6 x 2 4 x ) + ( 3 x 2 ) 2 x ( 3 x 2 ) + 1 ( 3 x 2 )

    :sad6x2-4x)+(3x-2)2x(3x-2)+1(3x-2)

    What is in the parenthesis is the same . We now have two terms that both have ( 3 x 2 ) as factor. Pull this factor out.
    ::括号中的内容是一样的。 我们现在有两个条件, 两者都具有( 3x-2) 系数。 拔出这个系数 。

    The factors of 6 x 2 x 2 are ( 3 x 2 ) ( 2 x + 1 ) . You can FOIL these to check your answer.
    ::6x2-x-2 的因数是 (3x-2)(2x+1) 。您可查看这些因数以查看您的答复 。

    Now, let's factor 4 x 2 + 8 x 5 .
    ::现在,让我们来考虑乘数4x2+8x-5。

    Let’s make the steps we followed in the previous problem a little more concise.
    ::让我们让我们在前一个问题上所遵循的步骤更简洁一点。

    Step 1: Find a c and the factors of this number that add up to b .
    ::第1步:查找 ac 和该数字中与 b 相加的系数。

    4 5 = 20 The factors of -20 that add up to 8 are 10 and -2.
    ::======================================================================================================================================================

    Step 2: Rewrite the trinomial with the x term expanded, using the two factors from Step 1.
    ::第2步:利用第1步的两个因素,以扩大的x-期重写三角关系。

      4 x 2 + 8 x 5   4 x 2 + 10 x 2 x 5

    ::4x2+8x-5 4x2+10x-2x-5

    Step 3: Group the first two and second two terms together, find the GCF and factor again.
    ::第3步:将前两个和第二个两个任期组合起来,再次发现绿色气候基金和因素。

    ( 4 x 2 + 10 x ) + ( 2 x 5 ) 2 x ( 2 x + 5 ) 1 ( 2 x + 5 ) ( 2 x + 5 ) ( 2 x 1 )

    :sad4x2+10x)+(-2x-5)2x(2x+5)-2x-2x+5)-1(2x+5)(2x+5)(2x+5)(2x-1)

    Alternate Method : What happens if we list 2 x before 10 x in Step 2?
    ::替代方法:如果我们在步骤2中列出-2x在10x之前出现什么情况?

    4 x 2 2 x + 10 x 5 ( 4 x 2 2 x ) ( 10 x 5 ) 2 x ( 2 x 1 ) + 5 ( 2 x 1 ) ( 2 x 1 ) ( 2 x + 5 )

    ::4x2-2x+10x-5(4x2-2-2x)(10x-5)2x(2x-1)+5(2x-1)-2x-1(2x-1)-1(2x-1)-2x-1(2x+5)

    This tells us it does not matter which x term we list first in Step 2 above.
    ::这告诉我们,我们在上文步骤2中首先列出哪个x-期并不重要。

    Let's factor 12 x 2 22 x 20 .
    ::12x2 -22x -20乘以12x2 -22x -20

    Let’s use the steps from the previous problem , but we are going to add an additional step at the beginning.
    ::让我们从上一个问题中走一步, 但我们在开始的时候还要再加一步。

    Step 1: Look for any common factors. Pull out the GCF of all three terms, if there is one.
    ::第1步:寻找任何共同因素。如果存在一个条件,则取消全球合作框架的所有三个条件。

    12 x 2 22 x 20 = 2 ( 6 x 2 11 x 10 )

    ::12x2-22x-20=2(6x2-11x-10)

    This will make it much easier for you to factor what is inside the parenthesis.
    ::这将使您更容易计算括号内的内容。

    Step 2: Using what is inside the parenthesis, find a c and determine the factors that add up to b .
    ::第2步:使用括号内的内容,找到 ac 并确定构成 b 的因素。

    6 10 = 60   15 4 = 60 ,   15 + 4 = 11

    The factors of -60 that add up to -11 are -15 and 4.
    ::总计为 -11的 -60 系数为 -15 和 4。

    Step 3: Rewrite the trinomial with the x - term expanded, using the two factors from Step 2.
    ::步骤3:利用从步骤2得出的两个因素,以扩大的x期重写三边协议。

    2 ( 6 x 2 11 x 10 ) 2 ( 6 x 2 15 x + 4 x 10 )

    ::2(6x2-11x-10)(2-6x2-15x+4x-10)

    Step 4: Group the first two and second two terms together, find the GCF and factor again.
    ::第4步:将前两个和第二个两个任期组合起来,再次发现绿色气候基金和因素。

    2 ( 6 x 2 15 x + 4 x 10 ) 2 [ ( 6 x 2 15 x ) + ( 4 x 10 ) ] 2 [ 3 x ( 2 x 5 ) + 2 ( 2 x 5 ) ] 2 ( 2 x 5 ) ( 3 x + 2 )

    ::2(6x2-15x+4x-10)2[(6x2-15x)+(4x-10)]2[3x(2x-2x-5)+2(2x-2x-5)]2 [2x-5(3x+2)

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the dimensions of the square. 
    ::早些时候,你被要求找到广场的方位

    The dimensions of a square are its length and its width, so we need to factor the area 9 x 2 + 24 x + 16 .
    ::方形的尺寸是其长度和宽度, 所以我们需要将区域 9x2+24x+16 乘以 。

    We need to multiply together a and c (from a x 2 + b x + c ) and then find the two numbers whose product is a c and whose sum is b .
    ::我们需要将a和c(从x2+bx+c)乘以1和c(从x2+bx+c),然后找到其产品为ac的两个数字,其总和为b。

    Now we can see that we need the two factors of 144 that also add up to 24. Testing the possibilities, we find that 12 12 = 144 and 12 + 12 = 24 .
    ::现在我们可以看到,我们需要144这两个因素,这些因素加起来达到24个。 测试可能性,我们发现1212=144和12+12=24。

    Now, take these factors and rewrite the x term expanded using 12 and 12.
    ::采用这些因素,重写使用12和12扩大的x-期。

      9 x 2 + 24 x + 16     9 x 2 + 12 x + 12 x + 16

    ::9x2+24x+16 9x2+12x+12x+16

    Next, group the first two terms together and the last two terms together and pull out any common factors.
    ::接下来,将前两个术语组合在一起,最后两个术语组合在一起,并找出任何共同因素。

    ( 9 x 2 + 12 x ) + ( 12 x + 16 ) 3 x ( 3 x + 4 ) + 4 ( 3 x + 4 )

    :sad9x2+12x)+(12x+16)3x(3x+4)+4(3x+4)

    We now have two terms that both have ( 3 x + 4 ) as factor. Pull this factor out.
    ::我们现在有两个条件,两个条件都以(3x+4)为因数,拉出这一因数。

    The factors of 9 x 2 + 24 x + 16 are ( 3 x + 4 ) ( 3 x + 4 ) , which are also the dimensions of the square.
    ::9x2+24x+16的因数是(3x+4)(3x+4),这些因数也是方形的尺寸。

    Example 2
    ::例2

    Multiply ( 4 x 3 ) ( 3 x + 5 ) .
    ::乘以 (4x-3)(3x+5)。

    FOIL: ( 4 x 3 ) ( 3 x + 5 ) = 12 x 2 + 20 x 9 x 15 = 12 x 2 + 11 x 15
    ::FIL: (4x-3 (3x+5)= 12x2+20x-9x-15=12x2+11x-15)

    Example 3
    ::例3

    Factor the following quadratic, if possible.
    ::如果可能,则以下列二次方位因数为因数。

    15 x 2 4 x 3
    ::15x2 - 4x - 3

    Use the steps from the examples above. There is no GCF, so we can find the factors of a c that add up to b .
    ::使用上述例子中的步骤。 没有绿色气候基金, 所以我们可以找到 ac 的系数, 加到 b 。

    15 3 = 45 The factors of -45 that add up to -4 are -9 and 5.
    ::15345 乘以 -4的-45系数为 -9和5。

    15 x 2 4 x 3 ( 15 x 2 9 x ) + ( 5 x 3 ) 3 x ( 5 x 3 ) + 1 ( 5 x 3 ) ( 5 x 3 ) ( 3 x + 1 )

    ::15x2-4x-3(15x2-9x)+(5x-3)3x(5x-3)+1(5x-3)(5x-3)(3x+1)

    Example 4
    ::例4

    Factor the following quadratic, if possible.
    ::如果可能,则以下列二次方位因数为因数。

    3 x 2 + 6 x 12
    ::3x2+6x-12

    3 x 2 + 6 x 12 has a GCF of 3. Pulling this out, we have 3 ( x 2 + 2 x 6 ) . There is no number in front of x 2 , so we see if there are any factors of -6 that add up to 2. There are not, so this trinomial is not factorable.
    ::3x2+6x-12全球合作框架为3。 拔出这个系数,我们有3(x2+2x-6)x2前面没有数字,所以我们看看有没有6-6因素加起来等于2。 没有,因此三重因素是不可考虑的。

    Example 5
    ::例5

    Factor the following quadratic, if possible.
    ::如果可能,则以下列二次方位因数为因数。

    24 x 2 30 x 9
    ::24x2-30x-9

    24 x 2 30 x 9 also has a GCF of 3. Pulling this out, we have 3 ( 8 x 2 10 x 3 ) . a c = 24 . The factors of -24 than add up to -10 are -12 and 2.
    ::24x2-30x-9也有3个全球合作框架。 解决这个问题,我们有3(8x2-10x-3) ac24。 与-10相加的24个因素是 -12和2。

    3 ( 8 x 2 10 x 3 ) 3 [ ( 8 x 2 12 x ) + ( 2 x 3 ) ] 3 [ 4 x ( 2 x 3 ) + 1 ( 2 x 3 ) ] 3 ( 2 x 3 ) ( 4 x + 1 )

    ::3(3)8x2-10x-3)3[(8x2-12x)+(2x-3)]3[(4x(2x-3)+1(2x-3)]3(2x-3)(4x+1)

    Example 6
    ::例6

    Factor the following quadratic, if possible.
    ::如果可能,则以下列二次方位因数为因数。

    4 x 2 + 4 x 48
    ::4x2+4x-48

    4 x 2 + 4 x 48 .  has a GCF of 4. Pulling this out, we have 4 ( x 2 + x 12 ) . This trinomial does not have a number in front of x 2 , so we can use the shortcut we are familiar with . What are the factors of -12 that add up to 1?
    ::4x2+4x- 48。 4x2+4x- 48。 全球合作框架为4:拉出来, 我们有 4(x2+x-12) 12。 这个三角体在 x2 前面没有数字, 所以我们可以使用我们熟悉的捷径。 12 因素加到 1 是什么?

    4 ( x 2 + x 12 ) 4 ( x + 4 ) ( x 3 )

    ::4(x2+x-12)4(x+4)(x-3)

    Review
    ::回顾

    Multiply the following expressions.
    ::乘以下列表达式。

    1. ( 2 x 1 ) ( x + 5 )
      :sad2x-1(x+5))
    2. ( 3 x + 2 ) ( 2 x 3 )
      :sad3x+2)(2x-3)
    3. ( 4 x + 1 ) ( 4 x 1 )
      :sad4x+1)(4x-1)

    Factor the following quadratic equations, if possible. If they cannot be factored, write not factorable . Don’t forget to look for any GCFs first.
    ::如果可能的话, 则以下列二次方程为因数。 如果无法计算的话, 请写不可计算。 不要忘记先寻找任何 GFSP 。

    1. 5 x 2 + 18 x + 9
      ::5x2+18x+9
    2. 6 x 2 21 x
      ::6x2 - 21x
    3. 10 x 2 x 3
      ::10x2-x-3
    4. 3 x 2 + 2 x 8
      ::3x2+2x-8
    5. 4 x 2 + 8 x + 3
      ::4x2+8x+3
    6. 12 x 2 12 x 18
      ::12x2-12x-18
    7. 16 x 2 6 x 1
      ::16x2-6x-1
    8. 5 x 2 35 x + 60
      ::5x2-35x+60
    9. 2 x 2 + 7 x + 3
      ::2x2+7x+3
    10. 3 x 2 + 3 x + 27
      ::3x2+3x+27
    11. 8 x 2 14 x 4
      ::8x2 - 14x - 4
    12. 10 x 2 + 27 x 9
      ::10x2+27x-9
    13. 4 x 2 + 12 x + 9
      ::4x2+12x+9
    14. 15 x 2 + 35 x
      ::15x2+35x
    15. 6 x 2 19 x + 15
      ::6x2-19x+15
    16. Factor x 2 25 . What is b ?
      ::乘以 x2 - 25。 什么是 b?
    17. Factor 9 x 2 16 . What is b ? What types of numbers are a and c ?
      ::9x2-16。b是什么?a和c是哪种数字?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。