当领导系数不等于1时完成广场
Section outline
-
The area of a parallelogram is given by the equation , where x is the length of the base. What is the length of this base?
::3x2+9x-5=0 方程式给出了平行图区域, x 是基数的长度。 此基数的长度是多少 ?Completing the Square
::完成广场When there is a number in front of , it will make a little more complicated.
::当 x2 前面有一个数字时, 它会变得更复杂一些 。Let's determine the number c that completes the square of .
::让我们来决定 完成 2x2 -8x+c 平方的 c 数字 。Previously , we just added , but that was when . Now that , we have to take the value of a into consideration. Let's pull out the GCF of 2 and 8 first.
::之前,我们刚刚添加了(b2)2,但当时A=1,现在A=1,我们必须考虑一个价值。让我们首先拿出2和8的绿色气候基金。
::2(x2 - 4x)Now, there is no number in front of .
::现在, x2 前面没有数字。.
:b2)2=(42)2=4。
Add this number inside the parenthesis and distribute the 2.
::在括号中添加此数字, 并分发 2 。
::2(x2-4x+4)=2x2-4x+8So, .
::所以,c=8。 。 。Solve the following by completing the square.
::完成广场,解决以下问题。
::3x2-9x+11=0Step 1: Write the polynomial so that and are on the left side of the equation and the constants on the right.
::步骤 1: 写入多数值, 使 x2 和 x 位于方程的左侧, 且位于右侧的常数 。
::3x2-9x11Step 2: Pull out from everything on the left side. Even if is not divisible by , the coefficient of needs to be 1 in order to complete the square.
::第2步:从左侧的所有东西中抽出一个。即使 b 无法被 a 变异, 但为填平方形, x2 的系数必须为 1 。
::3(x2 - 3x) 11Step 3: Now, complete the square. Determine what number would make a perfect square trinomial .
::第3步:现在,完成方形。决定哪个数字可以使一个完美的方形三角形。To do this, divide the term by 2 and square that number, or .
::为此,将x-期除以2和该数字的正方形,或(b2)2。
:b2)2=(32)2=94
Step 4: Add this number to the interior of the parenthesis on the left side. On the right side, you will need to add to keep the equation balanced.
::第4步:在左侧括号的内部添加此数字。 在右侧, 您需要添加 a(b2) 2 来保持方程平衡 。
::3(x2-3x+94)11+274Step 5: Factor the left side and simplify the right.
::第5步:以左侧为因子,简化右侧。
::3(x-32)2174Step 6: Solve by using square roots.
::步骤6:用平方根解决。
:x-32)%1712x-32i1723=33x=32×516i
Be careful with the addition of Step 2 and the changes made to Step 4. A very common mistake is to add to both sides, without multiplying by for the right side.
::当心增加第2步和修改第4步,一个非常常见的错误是向双方增加(b2)2,而不为右方乘以乘法。Solve the following by completing the square.
::完成广场,解决以下问题。
::4x2+7x-18=0Let’s follow the steps from problem #1 above.
::让我们从上面问题1的步子跟上。Step 1: Write the polynomial so that and are on the left side of the equation and the constants on the right.
::步骤 1: 写入多数值, 使 x2 和 x 位于方程的左侧, 且位于右侧的常数 。
::4x2-7x=18Step 2: Pull out from everything on the left side.
::步骤2:从左侧的一切中抽出一个。
::4( x2+74x) = 18Step 3: Now, complete the square. Find .
::第三步:现在,完成方形。查找 (b2) 2。
:b2)2=(782=4964)
Step 4: Add this number to the interior of the parenthesis on the left side. On the right side, you will need to add to keep the equation balanced.
::第4步:在左侧括号的内部添加此数字。 在右侧, 您需要添加 a(b2) 2 来保持方程平衡 。
::4 (x2+74x+4964)=18+4916Step 5: Factor the left side and simplify the right.
::第5步:以左侧为因子,简化右侧。
::4 (x+782) = 33716Step 6: Solve by using square roots.
::步骤6:用平方根解决。
:x+782=33764x+783378x_78}(x+782=33764x+78}(x+782=33764x+78})
Examples
::实例Example 1
::例1Earlier, you were asked to find the length of the base of the parallelogram.
::早些时候,有人要求你找到平行图的底部长度。We can't factor , so let's follow the step-by-step process we learned in this lesson.
::我们不能乘以 3x2+9x-5=0, 所以让我们遵循我们从这个教训中 学到的一步步过程。Step 1: Write the polynomial so that and are on the left side of the equation and the constants on the right.
::步骤 1: 写入多数值, 使 x2 和 x 位于方程的左侧, 且位于右侧的常数 。
::3x2+9x=5Step 2: Pull out from everything on the left side.
::步骤2:从左侧的一切中抽出一个。
::3(x2+3x)=5Step 3: Now, complete the square. Find .
::第三步:现在,完成方形。查找 (b2) 2。
:b2)2=(32)2=94
Step 4: Add this number to the interior of the parenthesis on the left side. On the right side, you will need to add to keep the equation balanced.
::第4步:在左侧括号的内部添加此数字。 在右侧, 您需要添加 a(b2) 2 来保持方程平衡 。
::3(x2+3x+94=5+274)Step 5: Factor the left side and simplify the right.
::第5步:以左侧为因子,简化右侧。
::3(x+322)=474Step 6: Solve by using square roots.
::步骤6:用平方根解决。
:x+32)2=4712x+324712x324723x321416
However, because x is the length of the parallelogram's base, it must have a positive value. Only results in a positive value, so the length of the base is .
::然而,由于 x 是平行图基数的长度, 它必须有一个正值 。 只有 x32+1416 得出正值, 所以基数的长度是 x32+1416 。Example 2
::例2Solve the following quadratic equation by completing the square: .
::通过完成方形( 5x2+29x-6=0) 解决以下二次方程。
::5x2+29x-6=05(x2+295x)=65(x2+295x+841100)=6+841205(x+291010)2=96120(x+2910)2=961100x+2910=961100x+2910=3110x_2910x_2910_3110x_6,15Example 3
::例3Solve the following quadratic by completing the square: .
::通过完成正方形( 8x2- 32x+4=0) 解决以下二次方形。
::8x2 - 32x+4=08(x2 - 4x)\48(x2 - 4x+4)\}4+328(x-2)2=28(x-2)2=28(x-2)2=72x-272-22x=2142Review
::回顾Solve the quadratic equations by completing the square.
::通过完成广场来解决二次方程。-
::6x2-12x-7=0 -
::-4x2+24x-100=0 -
::5x2-30x+55=0 -
::2x2-x-6=0 -
::12x2+7x+8=0 -
::- 3x2+4x+15=0
Solve the following equations by factoring, using square roots, or completing the square.
::通过保理、使用平方根或完成方块来解决以下方程式。-
::4x2-4x-8=0 -
::2x2+9x+7=0 -
::-5(x+4)2-19=26 -
::3x2+30x-5=0 -
::9x2--15x-6=0 -
::10x2+40x+88=0
Problems 13-15 build off of each other.
::13-15问题相互交织。-
Challenge
Complete the square for
. Follow the steps outlined in this lesson. Your final answer should be in terms of
and
.
::挑战方块为x2+bx+c=0。 遵循本课中概述的步骤。 您的最后答案应该是 a、 b 和 c 。 -
For the equation
, use the formula you found in #13 to solve for
.
::方程式 8x2+6x- 5=0 使用在# 13 中找到的公式解析 x。 -
Is the equation in #14 factorable? If so, factor and solve it.
::#14 中的方程式是可乘的吗? 如果是的话, 系数并解决它 。 -
Error Analysis
Examine the worked out problem below.
::检查以下已解决的问题。
::4x2 - 48x+11=04(x2 - 12x) 114(x2 - 12x+36) 11+364(x-6) 2=25(x-6) 2=254x6=254x6*5x=6*52x=652172,72Plug the answers into the original equation to see if they work. If not, find the error and correct it.
::将答案插入原始方程以查看是否有效。 否则, 找到错误并纠正错误 。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -