Section outline

  • Rectangular prism A has a volume of x 3 + 2 x 2 3 . Rectangular prism B has a volume of x 4 + 2 x 3 8 x 2 . How much larger is the volume of rectangular prism B than rectangular prism A? 
    ::矩形棱柱 A 的体积为 x3+2x2-3。 矩形棱柱 B 的体积为 x4+2x3-8x2。 矩形棱柱 B 的体积比 矩形棱柱 A 的体积大多少?

    Adding and Subtracting Polynomials
    ::添加和减减多面体

    A polynomial is an expression with multiple variable terms , such that the exponents are greater than or equal to zero. All quadratic and linear equations are . Equations with negative exponents, square roots, or variables in the denominator are not polynomials.
    ::多面性是一个表达式,有多个变量, 表示符大于或等于零。 所有二次方程和线性方程都是 。 负引号、 平根或分母变量的等式不是多面性 。

    Now that we have established what a polynomial is, there are a few important parts. Just like with a quadratic, a polynomial can have a constant , which is a number without a variable. The degree of a polynomial is the largest exponent . For example, all quadratic equations have a degree of 2. Lastly, the leading coefficient is the coefficient in front of the variable with the degree. In the polynomial 4 x 4 + 5 x 3 8 x 2 + 12 x + 24 above, the degree is 4 and the leading coefficient is also 4. Make sure that when finding the degree and leading coefficient you have the polynomial in standard form . Standard form lists all the variables in order , from greatest to least.
    ::现在,我们已经确定了多面体是什么, 有几个重要部分。 就像四面体一样, 多面体可以有一个常数, 这是一个没有变量的数字。 多面体的程度是最大的引号。 例如, 所有四面体方程式的度为 2 。 最后, 主要的系数是变量前的系数 。 在以上多面体 4x4+5x3- 8x2+12x+24 中, 度为 4, 主要系数也是 4 。 当找到学位和主要系数时, 请确保您有标准形式的多面体。 标准格式列出了所有变量, 从最大到最小的变量 。

    Let's rewrite x 3 5 x 2 + 12 x 4 + 15 8 x in standard form and find the degree and leading coefficient.
    ::让我们重写标准格式的 x3- 5x2+12x4+15-8x, 找到程度和主要系数 。

    To rewrite in standard form, put each term in order, from greatest to least, according to the exponent. Always write the constant last.
    ::以标准格式重写, 将每个词按顺序排列, 从最大到最小, 根据表情。 总是写最后一个常数 。

    x 3 5 x 2 + 12 x 4 + 15 8 x 12 x 4 + x 3 5 x 2 8 x + 15

    ::x3-5x2+12x4+15-8x12x4+x3-5x2-8x15

    Now, it is easy to see the leading coefficient, 12, and the degree, 4.
    ::现在,很容易看到主要系数12和程度4。

    Simplify ( 4 x 3 2 x 2 + 4 x + 15 ) + ( x 4 8 x 3 9 x 6 )
    ::简化 (4x3 - 2x2+4x+15)+( x4 - 8x3 - 9x-6)

    To add or subtract two polynomials, combine like terms . Like terms are any terms where the exponents of the variable are the same. We will regroup the polynomial to show the like terms.
    ::要添加或减去两个多义, 请将类似术语合并。 类似术语是变量的出处相同的任何术语。 我们将重新组合多义以显示类似术语 。

    ( 4 x 3 2 x 2 + 4 x + 15 ) + ( x 4 8 x 3 9 x 6 ) x 4 + ( 4 x 3 8 x 3 ) 2 x 2 + ( 4 x 9 x ) + ( 15 6 ) x 4 4 x 3 2 x 2 5 x + 9

    :sad4x3-2x2+4x+15+15)+(x4-8x3-8x3-9x-6)x4+(4x3-8x3-8x3)-2x2+(4x-9x)+(15-6)x4-4x3-2x2-5x+9)

    Simplify ( 2 x 3 + x 2 6 x 7 ) ( 5 x 3 3 x 2 + 10 x 12 )
    ::简化 (2x3+x2- 6x- 7)- (5x3- 3x2+10x- 12)

    When subtracting, distribute the negative sign to every term in the second polynomial, then combine like terms.
    ::减法时, 将负符号分布到第二个多义词中的每个词, 然后将类似词合并 。

    ( 2 x 3 + x 2 6 x 7 ) ( 5 x 3 3 x 2 + 10 x 12 ) 2 x 3 + x 2 6 x 7 5 x 3 + 3 x 2 10 x + 12 ( 2 x 3 5 x 3 ) + ( x 2 + 3 x 2 ) + ( 6 x 10 x ) + ( 7 + 12 ) 3 x 3 + 4 x 2 16 x + 5

    :sad2x3+x2-6x-2-6x-7)-(5x3-3x2-3x2+10x2-12)-2x3+6x-7-5x3+3x2-10x12(2x3-5x3)+(x2+3x3-3x3)+(6x-3x2)+(-6x-10x)+(-7+12)-3x3+3x3+4x2-16x5)

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the difference in the  volume of rectangular prism B compared to rectangular prism A. 
    ::早些时候,有人要求你找到 长方形棱柱B与长方形棱柱A的体积差异。

    We need to subtract the volume of rectangular prism A from the volume of rectangular prism B.
    ::我们需要从矩形棱柱B的体积中减去矩形棱柱A的体积。

    ( x 4 + 2 x 3 8 x 2 ) ( x 3 + 2 x 2 3 ) = x 4 + 2 x 3 8 x 2 x 3 2 x 2 + 3 = x 4 + x 3 10 x 2 + 3

    :sadx4+2x3-8x2)-(x3+2x2-2-3)=x4+2x3-8x3-8x2-x3--2x2+3=x4+x3-10x2+3)

    Therefore , the difference between the two volumes is x 4 + x 3 10 x 2 + 3 .
    ::因此,这两卷之间的差额是x4+x3-10x2+3。

    Example 2
    ::例2

    Is 2 x 3 5 x + 6 a polynomial? Why or why not?
    ::2x3- 5x+6 是多面体吗? 为什么或为什么不是?

    No, this is not a polynomial because x is under a square root in the equation .
    ::不,这不是一个多数值,因为 x 在方程式的平方根下。

    Example 3
    ::例3

    Find the leading coefficient and degree of 6 x 2 3 x 5 + 16 x 4 + 10 x 24 .
    ::查找6x2-3x5+16x4+10x-24的主要系数和程度。

    In standard form, this polynomial is 3 x 5 + 16 x 4 + 6 x 2 + 10 x 24 . Therefore, the degree is 5 and the leading coefficient is -3.
    ::在标准格式中,该多数值为-3x5+16x4+6x2+10x-24,因此,学位为5,主要系数为-3。

    Example 4
    ::例4

    Add the following polynomials:  ( 9 x 2 + 4 x 3 15 x + 22 ) + ( 6 x 3 4 x 2 + 8 x 14 ) .
    ::增加以下多数值sad9x2+4x3-15x+22)+(6x3-4x2+8x-14)。

    ( 9 x 2 + 4 x 3 15 x + 22 ) + ( 6 x 3 4 x 2 + 8 x 14 ) = 10 x 3 + 5 x 2 7 x + 8
    :sad9x2+4x3-15x+22)+(6x3-4x2+8x-14)=10x3+5x2-7x+8)

    Example 5
    ::例5

    Subtract  the following polynomials:  ( 7 x 3 + 20 x 3 ) ( x 3 2 x 2 + 14 x 18 ) .
    ::减去下列多数值sad7x3+20x-3)-(x3-2x2+14x-18)。

    ( 7 x 3 + 20 x 3 ) ( x 3 2 x 2 + 14 x 18 ) = 6 x 3 + 2 x 2 + 6 x + 15
    :sad7x3+20x-3)-(x3-2x2+14x-18)=6x3+2x2+6x+15

    Review
    ::回顾

    Determine if the following expressions are polynomials. If not, state why. If so, write in standard form and find the degree and leading coefficient.
    ::确定以下表达式是否为多数值。 如果不是, 请说明原因。 如果不是, 请以标准格式写入, 并找到程度和主要系数 。

    1. 1 x 2 + x + 5
      ::1x2+x+5
    2. x 3 + 8 x 4 15 x + 14 x 2 20
      ::x3+8x4 - 15x+14x2 - 20
    3. x 3 + 8
      ::x3+8x3+8
    4. 5 x 2 + 9 x 1 + 16
      ::5x-2+9x-1+16
    5. x 2 2 x 6 + 10
      ::x22 - x6+10 x22 - x6+10
    6. x 4 + 8 x 2 + 12 3
      ::x4+8x2+123
    7. x 2 4 x
      ::x2 - 4x
    8. 6 x 3 + 7 x 5 10 x 6 + 19 x 2 3 x + 41
      ::- 6x3+7x5-10x6+19x2-3x+41

    Add or subtract the following polynomials.
    ::添加或减去下列多数值。

    1. ( x 3 + 8 x 2 15 x + 11 ) + ( 3 x 3 5 x 2 4 x + 9 )
      :sadx3+8x2 - 15x+11)+(3x3 - 5x2 - 4x+9)
    2. ( 2 x 4 + x 3 + 12 x 2 + 6 x 18 ) ( 4 x 4 7 x 3 + 14 x 2 + 18 x 25 )
      :sad-2x4+x3+12x2+6x-18)-(4x4-7x3+14x2+18x-25)
    3. ( 10 x 3 x 2 + 6 x + 3 ) + ( x 4 3 x 3 + 8 x 2 9 x + 16 )
      :sad10x3-x2+6x+3)+(x4-3x3+8x2-9x+16)
    4. ( 7 x 3 2 x 2 + 4 x 5 ) ( 6 x 4 + 10 x 3 + x 2 + 4 x 1 )
      :sad7x3-2x2+4x-5)-(6x4+10x3+x2+4x-1)
    5. ( 15 x 2 + x 27 ) + ( 3 x 3 12 x + 16 )
      :sad15x2+x-27)+(3x3-12x+16)
    6. ( 2 x 5 3 x 4 + 21 x 2 + 11 x 32 ) ( x 4 3 x 3 9 x 2 + 14 x 15 )
      :sad2x5-3x4+21x2+11x-32)-(x4-3x3-9x2+14x-15)
    7. ( 8 x 3 13 x 2 + 24 ) ( x 3 + 4 x 2 2 x + 17 ) + ( 5 x 2 + 18 x 19 )
      :sad8x3-13x2+24)-(x3+4x2-2x+17)+(5x2+18x-19)

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。