Section outline

  • The volume of a rectangular prism is 10 x 3 25 x 2 15 x . What are the lengths of the prism's sides?
    ::矩形棱晶体积为 10x3 - 25x2 - 15x。 棱晶面的长度是多少?

    Factoring Polynomials in Quadratic Form 
    ::刻度表的聚合系数乘数

    The last type of factorable polynomial are those that are in quadratic form . Quadratic form is when a polynomial looks like a trinomial or binomial and can be factored like a quadratic. One example is when a polynomial is in the form a x 4 + b x 2 + c . Another possibility is something similar to the difference of squares , a 4 b 4 . This can be factored to ( a 2 b 2 ) ( a 2 + b 2 ) or ( a b ) ( a + b ) ( a 2 + b 2 ) . Always keep in mind that the greatest common factors should be factored out first.
    ::最后一个可考虑的多元性类型是四面形的。 二次曲线形式是多面形看起来像三边形或二进制, 并且可以像四方形那样进行计算。 一个例子是多面形为x4+bx2+c。 另一种可能性与正方形( a4-b4) 的差别相似, 可以与(a2-b2)(a2+b2) 或(a-b)(a2+b)(a2+b2) 或(a-b)(a2) +b) 或(b)(a2+b) 。 始终要记住, 最共同的因素应该首先被考虑。

    1. Factor the polynomial: 2 x 4 x 2 15
    ::1. 多数值系数: 2x4-x2-15

    This particular polynomial is factorable. First, a c = 30 . The factors of -30 that add up to -1 are -6 and 5. Expand the middle term and then use factoring by grouping .
    ::此特定的多数值是因数 。 首先, ac\\\\ 30。 - 30 的乘数加到 - 1, 是 - 6 和 5 。 扩大中期, 然后通过分组使用乘数 。

    2 x 4 x 2 15 2 x 4 6 x 2 + 5 x 2 15 2 x 2 ( x 2 3 ) + 5 ( x 2 3 ) ( x 2 3 ) ( 2 x 2 + 5 )

    ::2x4 - x2 - 152x4 - 6x4 - 6x2+5x2 - 152x2(x2 - 3)+5(x2 - 3)(x2 - 3)(x2 - 3)(2x2+5)

    Both of the factors are not factorable, so we are done.
    ::这两个因素都是不可考虑的因素,因此我们这样做了。

    2. Factor the polynomial: 81 x 4 16
    ::2. 多数值系数: 81x4-16

    Treat this polynomial equation like a difference of squares.
    ::将这个多面方程式作为方形的差数处理 。

    81 x 4 16 ( 9 x 2 4 ) ( 9 x 2 + 4 )

    ::81x4-16(9x2-4)(9x2+4)

    Now, we can factor 9 x 2 4 using the difference of squares a second time.
    ::现在,我们可以第二次使用方形的差数来乘以9x2-4。

    ( 3 x 2 ) ( 3 x + 2 ) ( 9 x 2 + 4 )

    :sad3x-2(3x+2)(9x2+4))

    9 x 2 + 4 cannot be factored because it is a sum of squares. This will have imaginary solutions.
    ::9x2+4 无法计算, 因为它是方形之和。 这将包含假想的解决方案 。

    Now, let's find all the real-number solutions of 6 x 5 51 x 3 27 x = 0 .
    ::现在,让我们找到所有 6x5 -51x3 -27x=0的 真实数字解决方案。

    First, pull out the GCF among the three terms .
    ::首先,在三个条件中拿出绿色气候基金。

    6 x 5 51 x 3 27 x = 0 3 x ( 2 x 4 17 x 2 9 ) = 0

    ::6x5 - 51x3 - 27x=03x(2x4 - 17x2 - 9)=0

    Factor what is inside the parenthesis like a quadratic equation . a c = 18 and the factors of -18 that add up to -17 are -18 and 1. Expand the middle term and then use factoring by grouping.
    ::括号内的系数是- 17。 ac\\\ 18 和 - 18 的系数是 - 17是 - 18 和 1. 扩大中期,然后通过分组使用乘数。

    6 x 5 51 x 3 27 x = 0 3 x ( 2 x 4 17 x 2 9 ) = 0 3 x ( 2 x 4 18 x 2 + x 2 9 ) = 0 3 x [ 2 x 2 ( x 2 9 ) + 1 ( x 2 9 ) ] = 0 3 x ( x 2 9 ) ( 2 x 2 + 1 ) = 0

    ::6x5-51-51x3-27x=03x(2x4-17x2-9)=03x(2x4-18x2+x2-9)=03x[2x2(x2-9)+1(x2-9)]=03x(x2-9)(2x2+1)=0

    Factor x 2 9 further and solve for x where possible. 2 x 2 + 1 is not factorable.
    ::2x2+1 无法计算。

    3 x ( x 2 9 ) ( 2 x 2 + 1 ) = 0 3 x ( x 3 ) ( x + 3 ) ( 2 x 2 + 1 ) = 0 x = 3 , 0 , 3

    ::3x(x2- 9) (2x2+1) =03x(x-3)(x+3)(2x2+1) =0x*3,0,3)

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  the lengths of the prism's sides. 
    ::早些时候,有人要求你找出棱镜两面的长度。

    To find the lengths of the prism's sides, we need to factor 10 x 3 25 x 2 15 x .
    ::要找到棱镜侧的长度, 我们需要乘以 10x3 - 25x2 - 15x。

    First, pull out the GCF among the three terms.
    ::首先,在三个条件中拿出绿色气候基金。

    10 x 3 25 x 2 15 x 5 x ( 2 x 2 5 x 3 )

    ::10x3 - 25x2 - 15x5x(2x2 - 5x-3)

    Factor what is inside the parenthesis like a quadratic equation. a c = 6 and the factors of -6 that add up to -5 are -6 and 1.
    ::括号内的系数,如二次方程。 ac6, 加上 -5 的 -6 系数为 -6 和 1。

    5 x ( 2 x 2 5 x 3 ) = 5 x ( 2 x + 1 ) ( x 3 )

    ::5x(2x2-5x-3)=5x(2x+1)(x-3)

    Therefore , the lengths of the rectangular prism's sides are 5 x , 2 x + 1 , and x 3 .
    ::因此,矩形棱柱两侧的长度分别为5x、2x+1和x-3。

    Example 2
    ::例2

    Factor:  3 x 4 + 14 x 2 + 8 .
    ::系数:3x4+14x2+8。

    a c = 24 and the factors of 24 that add up to 14 are 12 and 2.
    ::ac=24,24系数加到14是12和2。

    3 x 4 + 14 x 2 + 8 3 x 4 + 12 x 2 + 2 x 2 + 8 3 x 2 ( x 2 + 4 ) + 2 ( x 4 + 4 ) ( x 2 + 4 ) ( 3 x 2 + 2 )

    ::3x4+14x2+83x4+12x2+2x2+832x2(x2+4)+2(x4+4(x2+4)(x2+4)(3x2+2)

    Example 3
    ::例3

    Factor:  36 x 4 25 .
    ::系数:36x4-25。

    Factor this polynomial like a difference of squares.
    ::将这个多面形像平方形的差数乘以 。

    36 x 4 25 ( 6 x 2 5 ) ( 6 x 2 + 5 )

    ::36x4-25(6x2-5)(6x2+5)

    6 and 5 are not square numbers, so this cannot be factored further.
    ::6和5不是平方数字,因此无法进一步计算。

    Example 4
    ::例4

    Find all the real-number solutions of 8 x 5 + 26 x 3 24 x = 0 .
    ::查找 8x5+26x3- 24x=0 的所有真实数字解决方案 。

    Pull out a 2 x from each term.
    ::从每个学期抽出2x

    8 x 5 + 26 x 3 24 x = 0 2 x ( 4 x 4 + 13 x 12 ) = 0 2 x ( 4 x 4 + 16 x 2 3 x 2 12 ) = 0 2 x [ 4 x 2 ( x 2 + 4 ) 3 ( x 2 + 4 ) ] = 0 2 x ( x 2 + 4 ) ( 4 x 2 3 ) = 0

    ::8x5+26x3-24x3-24x=02x(4x4+13x-12)=02x(4x4+16x2-3x2-12)=02x[4x2(x2+4)-3(x2+4)]=02x(x2+4)(4x2-3)=0

    Set each factor equal to zero.
    ::设定每个系数等于零。

        4 x 2 3 = 0 2 x = 0 x 2 + 4 = 0             a n d x 2 = 3 4   x = 0 x 2 = 4   x = ± 3 2

    ::4x2 - 3=02x=0x2+4=0和x2=0和x2=34x=0x2=4x4x4x_*4x_***32

    Notice the second factor will give imaginary solutions.
    ::注意第二个因素将给出假想的解决方案。

    Review
    ::回顾

    Factor the following quadratics completely.
    ::系数如下二次方位完全。

    1. x 4 6 x 2 + 8
      ::x4 - 6x2+8
    2. x 4 4 x 2 45
      ::x4 - 4x2 - 45
    3. x 4 18 x 2 + 45
      ::x4 - 18x2+45
    4. 4 x 4 11 x 2 3
      ::4x4-11x2-3
    5. 6 x 4 + 19 x 2 + 8
      ::6x4+19x2+8
    6. x 4 81
      ::x4 - 81
    7. 16 x 4 1
      ::16x4-1
    8. 6 x 5 + 26 x 3 20 x
      ::6x5+26x3-20x
    9. 4 x 6 36 x 2
      ::4x6-36x2
    10. 625 81 x 4
      ::625-814x4

    Find all the real-number solutions to the polynomials below.
    ::找到所有真实数字的解决方案 来解决下面的多元分子问题。

    1. 2 x 4 5 x 2 12 = 0
      ::2x4 - 5x2 - 12=0
    2. x 4 16 = 0
      ::x4 - 16=0
    3. 16 x 4 49 = 0
      ::16x4-49=0
    4. 12 x 6 + 69 x 4 + 45 x 2 = 0
      ::12x6+69x4+45x2=0
    5. 3 x 4 + 17 x 2 6 = 0
      ::3x4+17x2-6=0

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。