定义 nth 根
章节大纲
-
The volume of a cube is found to be . What is the length of each side of the cube?
::立方体的体积为343.7。 立方体每一侧的长度是多少?nth Roots
::nth 根So far, we have seen exponents with integers and the square root . In this concept, we will link roots and exponents. First, let’s define additional roots. Just like the square and the square root are inverses of each other, the inverse of a cube is the cubed root . The inverse of the fourth power is the fourth root.
::到目前为止,我们已经看到以整数和平方根的表情。 在这个概念中,我们将连接根和直方根。 首先,让我们来定义更多的根。 就像方根和平方根是反向的一样,立方体的反面是立方根。 第四个功率的反面是第四根。The root of a number, , is . And, just like simplifying square roots, we can simplify roots.
::数字的 nthroot, xn, 是 x, xnn=x。 就像简化平方根一样, 我们可以简化 nth root 。Let's find .
::我们去找7296To simplify a number to the sixth root, there must be 6 of the same factor to pull out of the root.
::要将数字简化为第六个根,必须有一个因素中的六个因素才能从根中拔出。Therefore , . The sixth root and the sixth power cancel each other out. We say that 3 is the sixth root of 729.
::因此, 7296=366=3. 第六根和第六电源互相取消。 我们说, 3是第六根 729。From this problem , we can see that it does not matter where the exponent is placed, it will always cancel out with the root.
::从这个问题中,我们可以看到,不管出价放在哪里,它总是用根来取消。
::366=366或3667296=(1.2009...)63=3So, it does not matter if you evaluate the root first or the exponent.
::所以,无论你先评价根还是先评价根,都无关紧要。The Root Theorem : For any real number , root , and exponent , the following is always true: .
::Nth 根理论: 对于任何真正的数字 a, root n, 和表率 m, 以下总是真实的: amn=anm=( an) m 。Evaluate:
::评价:3235If you solve this problem as written, you would first find and then apply the root.
::如果您以书面方式解决这个问题, 将首先找到 323, 然后应用 5 根 。However, this would be very difficult to do without a calculator. This is an example where it would be easier to apply the root and then the exponent. Let’s rewrite the expression and solve.
::然而,如果没有计算器,这很难做到。 这是一个比较容易应用根和推手的例子。 让我们重写表达式和解答。Evaluate:
::评价:163This problem does not need to be rewritten. and then .
::这个问题不需要重写。 16=4, 然后43=64。Finally, let's simplify the following.
::最后,让我们简化以下内容。Evaluate:
::评价:644To simplify the fourth root of a number, there must be 4 of the same factor to pull it out of the root. Let’s write the prime factorization of 64 and simplify.
::要简化数字的第四根根,必须用同一种因素中的4根来将其从根中拉出来。 让我们写64的质因数并简化。Notice that there are 6 2’s in 64. We can pull out 4 of them and 2 2’s are left under the radical .
::我们可以撤走其中4个, 2个被留在激进组织之下。Evaluate:
::评价:54x3125y53Just like simplifying fractions with square roots, we can separate the numerator and denominator.
::就像简化有平方根的分数一样, 我们可以分离分子和分母。
::54x3125y53 = 54x33125y53 = 2}3}3}3}3}3×3}3}3}3}3}3}3}3}3}3}5}5}5}5}}}y}3}23=3×23}3×23}23Notice that because the is cubed, the cube and cubed root cancel each other out. With the - term , there were five, so three cancel out with the root, but two are still left under radical.
::请注意, 因为 x 是立方体, 立方体和立方根会相互取消 。 在 Y 期, 有五个, 所以有三个取消 根, 但两个仍然在基下 。Examples
::实例Example 1
::例1Earlier, you were asked to find the length of each side of the cube.
::早些时候,你被要求找到 立方体每一侧的长度。Recall that the volume of a cube is , where s is the length of each side. So to find the side length, take the cube root of .
::回顾立方体的体积是 V=3, 方体的长度为每边的长度。 要找到侧长, 请选择343z7 的立方体根 。First, you can separate this number into two different roots, . Now, simplify each root.
::首先,您可以将这个数字分为两个不同的根,3433z73。现在,简化每个根。
::3433z73=733z3z3z3z3=7z2z3Therefore, the length of the cube's side is .
::因此,立方体侧的长度是7z2z3。Example 2
::例2Simplify:
::简化: 625z84First, you can separate this number into two different roots, . Now, simplify each root.
::首先,您可以将这个数字分为两个不同的根, 6254z84。 现在, 简化每个根 。
::6254z84=544z4z44=5z2When looking at the , think about how many you can even pull out of the fourth root. The answer is 2, or a , outside of the radical.
::当看Z8时, 想想有多少Z4可以从第四根中提取出来。 答案是 2 或 z2 , 在激进分子之外 。Example 3
::例3Simplify:
::简化: 32x5y7, which means there are not 7 2's that can be pulled out of the radical. Same with the and the . Therefore, you cannot simplify the expression any further.
::32=25, 这意味着没有 7 2 值可以从基体中提取出来。 与 x5 和 y 相同。 因此, 您无法进一步简化表达式 。Example 4
::例4Simplify:
::简化:92165Write out 9216 in the prime factorization and place factors into groups of 5.
::在初级系数中写9216,并将各种因素分为5组。Example 5
::例5Simplify:
::简化: 401753Reduce the fraction , separate the numerator and denominator and simplify.
::减少分数,分离分子和分母并简化。In the red step, we rationalized the denominator by multiplying the top and bottom by , so that the denominator would be or just 35. Be careful when rationalizing the denominator with higher roots!
::在红色步骤中,我们通过将顶部和底部乘以3523, 使分母合理化, 这样分母就会是3533或35。 当将分母合理化时要小心高根!Review
::回顾Reduce the following radical expressions.
::减少以下激进表达式。-
::24x53 24x53 -
::48x7y134 -
::160x88y75 -
::1000x632 -
::162x5y3z104 -
::40x3y43
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。