章节大纲

  • The volume of a cube is found to be 343 s 7 . What is the length of each side of the cube?
    ::立方体的体积为343.7。 立方体每一侧的长度是多少?

    nth Roots
    ::nth 根

    So far, we have seen exponents with integers and the square root . In this concept, we will link roots and exponents. First, let’s define additional roots. Just like the square and the square root are inverses of each other, the inverse of a cube is the cubed root . The inverse of the fourth power is the fourth root.
    ::到目前为止,我们已经看到以整数和平方根的表情。 在这个概念中,我们将连接根和直方根。 首先,让我们来定义更多的根。 就像方根和平方根是反向的一样,立方体的反面是立方根。 第四个功率的反面是第四根。

    27 3 = 3 3 3 = 3 , 32 5 = 2 5 5 = 2

    The n t h root of a number, x n , is x , x n n = x . And, just like simplifying square roots, we can simplify n t h roots.
    ::数字的 nthroot, xn, 是 x, xnn=x。 就像简化平方根一样, 我们可以简化 nth root 。

    Let's find 729 6 .
    ::我们去找7296

    To simplify a number to the sixth root, there must be 6 of the same factor to pull out of the root.
    ::要将数字简化为第六个根,必须有一个因素中的六个因素才能从根中拔出。

    729 = 3 3 3 3 3 3 = 3 6

    Therefore , 729 6 = 3 6 6 = 3 . The sixth root and the sixth power cancel each other out. We say that 3 is the sixth root of 729.
    ::因此, 7296=366=3. 第六根和第六电源互相取消。 我们说, 3是第六根 729。

    From this problem , we can see that it does not matter where the exponent is placed, it will always cancel out with the root.
    ::从这个问题中,我们可以看到,不管出价放在哪里,它总是用根来取消。

    3 6 6 = 3 6 6   o r   ( 3 6 ) 6 729 6 = ( 1.2009 ) 6 3 = 3

    ::366=366或3667296=(1.2009...)63=3

    So, it does not matter if you evaluate the root first or the exponent.
    ::所以,无论你先评价根还是先评价根,都无关紧要。

    The n t h Root Theorem : For any real number a , root n , and exponent m , the following is always true: a m n = a n m = ( a n ) m .
    ::Nth 根理论: 对于任何真正的数字 a, root n, 和表率 m, 以下总是真实的: amn=anm=( an) m 。

    Evaluate: 32 3 5
    ::评价:3235

    If you solve this problem as written, you would first find 32 3 and then apply the 5 t h root.
    ::如果您以书面方式解决这个问题, 将首先找到 323, 然后应用 5 根 。

    32 3 5 = 38768 5 = 8

    However, this would be very difficult to do without a calculator. This is an example where it would be easier to apply the root and then the exponent. Let’s rewrite the expression and solve.
    ::然而,如果没有计算器,这很难做到。 这是一个比较容易应用根和推手的例子。 让我们重写表达式和解答。

    32 5 3 = 2 3 = 8

    Evaluate: 16 3
    ::评价:163

    This problem does not need to be rewritten. 16 = 4 and then 4 3 = 64 .
    ::这个问题不需要重写。 16=4, 然后43=64。

    Finally, let's simplify the following.
    ::最后,让我们简化以下内容。

    Evaluate: 64 4
    ::评价:644

    To simplify the fourth root of a number, there must be 4 of the same factor to pull it out of the root. Let’s write the prime factorization of 64 and simplify.
    ::要简化数字的第四根根,必须用同一种因素中的4根来将其从根中拉出来。 让我们写64的质因数并简化。

    64 4 = 2 2 2 2 2 2 4 = 2 4 4

    Notice that there are 6 2’s in 64. We can pull out 4 of them and 2 2’s are left under the radical .
    ::我们可以撤走其中4个, 2个被留在激进组织之下。

    Evaluate: 54 x 3 125 y 5 3
    ::评价:54x3125y53

    Just like simplifying fractions with square roots, we can separate the numerator and denominator.
    ::就像简化有平方根的分数一样, 我们可以分离分子和分母。

    54 x 3 125 y 5 3 = 54 x 3 3 125 y 5 3 = 2 3 3 3 x 3 3 5 5 5 y 3 y 2 3 = 3 x 2 3 5 y y 2 3
    ::54x3125y53 = 54x33125y53 = 2}3}3}3}3}3×3}3}3}3}3}3}3}3}3}3}5}5}5}5}}}y}3}23=3×23}3×23}23

    Notice that because the x is cubed, the cube and cubed root cancel each other out. With the y - term , there were five, so three cancel out with the root, but two are still left under radical.
    ::请注意, 因为 x 是立方体, 立方体和立方根会相互取消 。 在 Y 期, 有五个, 所以有三个取消 根, 但两个仍然在基下 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the length of each side of the cube. 
    ::早些时候,你被要求找到 立方体每一侧的长度。

    Recall that the volume of a cube is V = s 3 , where s is the length of each side. So to find the side length, take the cube root of 343 z 7 .
    ::回顾立方体的体积是 V=3, 方体的长度为每边的长度。 要找到侧长, 请选择343z7 的立方体根 。

    First, you can separate this number into two different roots, 343 3 z 7 3 . Now, simplify each root.
    ::首先,您可以将这个数字分为两个不同的根,3433z73。现在,简化每个根。

    343 3 z 7 3 = 7 3 3 z 3 z 3 z 3 = 7 z 2 z 3
    ::3433z73=733z3z3z3z3=7z2z3

    Therefore, the length of the cube's side is 7 z 2 z 3 .
    ::因此,立方体侧的长度是7z2z3。

    Example 2
    ::例2

    Simplify: 625 z 8 4
    ::简化: 625z84

    First, you can separate this number into two different roots, 625 4 z 8 4 . Now, simplify each root.
    ::首先,您可以将这个数字分为两个不同的根, 6254z84。 现在, 简化每个根 。

    625 4 z 8 4 = 5 4 4 z 4 z 4 4 = 5 z 2
    ::6254z84=544z4z44=5z2

    When looking at the z 8 , think about how many z 4 you can even pull out of the fourth root. The answer is 2, or a z 2 , outside of the radical.
    ::当看Z8时, 想想有多少Z4可以从第四根中提取出来。 答案是 2 或 z2 , 在激进分子之外 。

    Example 3
    ::例3

    Simplify: 32 x 5 y 7
    ::简化: 32x5y7

    32 = 2 5 , which means there are not 7 2's that can be pulled out of the radical. Same with the x 5 and the y . Therefore, you cannot simplify the expression any further.
    ::32=25, 这意味着没有 7 2 值可以从基体中提取出来。 与 x5 和 y 相同。 因此, 您无法进一步简化表达式 。

    Example 4
    ::例4

    Simplify: 9216 5
    ::简化:92165

    Write out 9216 in the prime factorization and place factors into groups of 5.
    ::在初级系数中写9216,并将各种因素分为5组。

    9216 5 = 2 2 2 2 2 2 2 2 2 2 3 3 5 = 2 5 2 5 3 2 5 = 2 2 3 2 5 = 4 9 5

    Example 5
    ::例5

    Simplify: 40 175 3
    ::简化: 401753

    Reduce the fraction , separate the numerator and denominator and simplify.
    ::减少分数,分离分子和分母并简化。

    40 175 3 = 8 35 3 = 2 3 3 35 3 = 2 35 3 35 2 3 35 2 3 = 2 1225 3 35

    In the red step, we rationalized the denominator by multiplying the top and bottom by 35 2 3 , so that the denominator would be 35 3 3 or just 35. Be careful when rationalizing the denominator with higher roots!
    ::在红色步骤中,我们通过将顶部和底部乘以3523, 使分母合理化, 这样分母就会是3533或35。 当将分母合理化时要小心高根!

    Review
    ::回顾

    Reduce the following radical expressions.
    ::减少以下激进表达式。

    1. 81 3
    2. 625 4 3
    3. 9 5
    4. 128 5
    5. 10000
    6. 25 8 4
    7. 64 6 5
    8. 8 81 3 2
    9. 243 16 4
    10. 24 x 5 3
      ::24x53 24x53
    11. 48 x 7 y 13 4
      ::48x7y134
    12. 160 x 8 y 7 5
      ::160x88y75
    13. 1000 x 6 3 2
      ::1000x632
    14. 162 x 5 y 3 z 10 4
      ::162x5y3z104
    15. 40 x 3 y 4 3
      ::40x3y43

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。