解决简单的激进方程式
章节大纲
-
The legs of a right triangle measure 3 and . The hypotenuse measures 5. What is the length of the leg with the unknown value?
::右三角的腿 3 和 2x 。 下限测量 5 。 腿的长度是多少, 值未知 ?Solving Radical Equations
::解决激进等号Solving radical equations are very similar to solving other types of equations. The objective is to get by itself. However, now there are radicals within the equations. Recall that the opposite of the square root of something is to square it.
::解决激进方程式与解决其他方程式非常相似。 目标是自己获得 x 。 但是, 现在方程式中存在激进方程式 。 回顾某方方程式的正方根对面是正方方形 。Let's determine if is the solution to .
::让我们确定 x=5 是否是 2x+15=8 的解决方案 。Plug in 5 for to see if the equation holds true. If it does, then 5 is the solution.
::x 的插件在 5 中, x 看看方程式是否正确 。 如果是, 5 是解决方案 。We know that , so is not the solution.
::我们知道25=5,所以x=5不是解决办法。Now, let's solve the following equations for x.
::现在,让我们解决x的以下方程式。-
::2x-5+7=16
To solve for , we need to isolate the radical. Subtract 7 from both sides.
::要解决x,我们需要隔离激进分子,从两边减7
::2x-5+7=162x-5=9Now, we can square both sides to eliminate the radical. Only square both sides when the radical is alone on one side of the equals sign.
::现在,我们可以让双方平分来消灭激进分子。 只有激进分子独自站在平等标志的一方时,双方才能平分。
::2 - 52=922x-5=812x=86x=43Check:
::检查:2(43)-5+7=86-5+7=81+7=7=9+7=16ALWAYS check your answers when solving radical equations. Sometimes, you will solve an equation, get a solution, and then plug it back in and it will not work. These types of solutions are called extraneous solutions and are not actually considered solutions to the equation.
::ALWAS 在解答激进方程式时检查您的答案。 有时, 您会解答方程式, 找到一个解决方案, 然后插入它, 它不会起作用 。 这些类型的解决方案被称为不相干解决方案, 而实际上不被认为是公式的解决方案 。-
::3-83-214
Again, isolate the radical first. Add 2 to both sides and divide by 3.
::再次将激进先锋孤立开来。 双方加2,分3,分2。
::3 - 83 - 2 143x - 83 12x - 83 4Now, cube both sides to eliminate the radical.
::现在 立方两边消灭激进分子
::x- 833=(- 4)3x-864x56Check:
::检查: 3-56- 83-2=3- 643-2=3- 4-2}12-214Examples
::实例Example 1
::例1Earlier, you were asked to find the length of the leg with the unknown value.
::早些时候,有人要求你用未知的值来寻找腿的长度。Use the Pythagorean Theorem and solve for x then substitute that value in to solve for the leg with the unknown.
::使用 Pythagorean 理论并解析 x , 然后用未知值替换此值, 以未知值解析腿 。
::32+(2x)2=529+4x=254x=16x=4Now substitute this value into the leg with the unknown.
::现在将此值替换为未知值 。Therefore the leg with the unknown has a length of 4.
::因此,未知的腿长为4。Example 2
::例2Solve for x: . Check your answer.
::解决 x: x+5=6. 请检查您的答案 。The radical is already isolated here. Square both sides and solve for .
::激进分子已经在这里被隔离了 将两侧平开 解决 x 。
::x+52=62x+5=36x=31Check:
::检查: 31+5=36=6Example 3
::例3Solve for x: . Check your answer.
::x: 52x- 1+1=26。请检查您的答案 。Isolate the radical by subtracting 1 and then dividing by 5.
::将激进分子隔离,减去1,然后除以5。
::52x-1+1=2652x-1=252x-1=5Square both sides and continue to solve for .
::两边的广场 继续解决 x 。
::2 - 12=522x-1=252x=26x=13Check:
::检查: 52( 13) - 1+1=126 - 1=525+1=525=1=5_5=5=5=5=5=5=5=5=5+5=1=25+1=26Example 4
::例4Solve for x: . Check your answer.
::x: 3x+114-2=3。 请检查您的答案 。In this problem, we have a fourth root . That means, once we isolate the radical, we must raise both sides to the fourth power to eliminate it.
::在这个问题上,我们有第四根根根,这意味着一旦我们孤立了激进分子,我们必须将双方推向第四势力,以消灭它。
::3x+114-2=33x-1144=543x-111=6253x=636x=212Check:
::检查:3(212)+114-2=636-114-2=6254-2=5-2=3Review
::回顾Determine if the given values of x are solutions to the radical equations below.
::确定 x 的给定值是否是以下基方程的解决方案。-
::x-3=7;x=32 -
::6+x3=3;x=21 -
::2x+34- 11\\\\\\\\\\\9;x=6
Solve the equations and check your answers.
::解决方程式 检查你的答案-
::x+5=6 x+5=6 -
::2 - x+1=0 -
::45-x=12 -
::x+9+7=11 x9+7=11 -
::12 - 23=1 -
::x+33+5=9 -
::515-x+2=17 -
::- 5=x-55-7 -
::x- 64+10=13 -
::85x+53=8 -
::3x+7-2=25 -
::235+x4+9=14
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -