章节大纲

  • The period (in seconds) of a pendulum with a length of L (in meters) is given by the formula P = 2 π ( L 9.8 ) 1 2 . If the period of a pendulum is 10 π is the length of the pendulum 156.8?
    ::P=2(L9.8)12的公式给出长于L(米)的钟表周期(秒)。如果钟表周期为10,则时长为156.8?

    Solving Rational Exponent Equations
    ::解决理性指数方程式

    When solving a rational exponent equation , you first isolate the variable . Then, to eliminate the exponent , you will need to raise everything to the reciprocal power.
    ::当解决一个理性的速率方程式时,你首先孤立变量。然后,为了消除指数,你需要将一切提升到对等权力。

    Let's determine if x = 9 is a solution to 2 x 3 2 19 = 35 .
    ::让我们确定 x = 9 是 2x32-19 = 35 的解决方案 。

    Substitute in x and see if the equation holds.
    ::以 x 代替, 看看方程式是否有效 。

    2 ( 9 ) 3 2 19 = 35 2 27 19 = 35 54 19 = 35

    9 is a solution to this equation.
    ::9是这个等式的解决方案。

    Now, let's solve the following equations for x.
    ::现在,让我们解决x的以下方程式。

    1. 3 x 5 2 = 96
      ::3x52=96

    First, divide both sides by 3 to isolate x .
    ::首先,将双方除以3,分离x。

    3 x 5 2 = 96 x 5 2 = 32

    ::3x52=96x52=32

    x is raised to the five-halves power. To cancel out this exponent, we need to raise everything to the two-fifths power.
    ::X 被提升到五分之一的电源。 要取消这个提示, 我们需要将一切提升到五分之二的电源 。

    ( x 5 2 ) 2 5 = 32 2 5 x = 32 2 5 x = 32 5 2 = 2 2 = 4

    :伤心x5225=3225x=3225x=3252=22=4)

    Check: 3 ( 4 ) 5 2 = 3 2 5 = 3 32 = 96
    ::查询: 3(4)52=325=332=96

    1. 2 ( x 5 ) 3 4 + 48 = 202
      :伤心2x-5-5)34+48202

    Isolate ( x 5 ) 3 4 by subtracting 48 and dividing by -2.
    ::孤立(x-5-5)34,减去48,除以-2。

    2 ( x 5 ) 3 4 + 48 = 202 2 ( x 5 ) 3 4 = 250 ( x 5 ) 3 4 = 125

    ::- (x-5)34+48202-2(x-5)34250(x-5)34125

    To undo the three-fourths power, raise everything to the four-thirds power.
    ::为了推翻四分之三的权力, 将一切提升到四分之三的权力。

    [ ( x 5 ) 3 4 ] 4 3 = ( 125 ) 4 3 x 5 = 625 x = 630

    ::[(x-5)34]43=(-125)43x-5=625x=630

    Check: 2 ( 630 5 ) 3 4 + 48 = 2 625 3 4 + 48 = 2 125 + 48 = 250 + 48 = 202
    ::检查:- (2) 630- 5) 34+48 @2} @262534+48}2125+48}250+48202

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to verify the length of the pendulum. 
    ::早些时候,有人要求你核查钟摆的长度。

    We need to plug 156.8 in to the equation P = 2 π ( L 9.8 ) 1 2 for L and solve. If our answer equals 10 π , then the given length is correct.
    ::我们需要将156.8插入L的 P=2Q(L9.8)12 等式并解析。 如果我们的答案等于 10Q, 那么给定的长度是正确的 。

    P = 2 π ( L 9.8 ) 1 2 2 π ( 156.8 9.8 ) 1 2 2 π ( 16 ) 1 2 2 π ( 4 ) = 8 π

    ::P=2(L9.8) 122(156.89.8) 122(16) 122(4)=8

    8 π does not equal 10 π , so the length cannot be 156.8.
    ::8不等于10,所以长度不能为156.8。

    Solve the following rational exponent equations and check for extraneous solutions.
    ::解决以下合理的推理方程式,并检查不相干的解决办法。

    Example 2
    ::例2

    8 ( 3 x 1 ) 2 3 = 200
    ::8(3x-1)23=200

    Divide both sides by 8 and raise everything to the three-halves power.
    ::将两边除以8 把每样东西都加到三座的威力上

    8 ( 3 x 1 ) 2 3 = 200 [ ( 3 x 1 ) 2 3 ] 3 2 = ( 25 ) 3 2 3 x 1 = 125 3 x = 126 x = 42

    ::8( 3x- 1) 23=200[ (3x- 1) 23] 32=( 25) 323x- 1=1=1253x=126x=42

    Check: 8 ( 3 ( 42 ) 1 ) 2 3 = 8 ( 126 1 ) 2 3 = 8 ( 125 ) 2 3 = 8 25 = 200
    ::检查: 8( 3( 42) - 1) 23= 8( 126) - 1) 23= 8( 125) 23= 8( 8) 25= 200

    Example 3
    ::例3

    6 x 3 2 141 = 1917 2. 
    ::6x32-141=19172。

    Here, only the x is raised to the three-halves power. Subtract 141 from both sides and divide by 6. Then, eliminate the exponent by raising both sides to the two-thirds power.
    ::在这里, 只有 x 才能升到三座。 从两侧减141 , 然后除以 6 。 然后, 通过 将 双方 提升到 三分之二 的 权力 来消除 引力 。

    6 x 3 2 141 = 1917 6 x 3 2 = 2058 x 3 2 = 343 x = 343 2 3 = 7 2 = 49

    ::6x32-141=19176x32=2058x32=343x=343x=34323=72=49

    Check: 6 ( 49 ) 3 2 141 = 6 343 141 = 2058 141 = 1917
    ::查询: 6( 4932) -141=6}343 -141=2058 - 141=1917

    Review
    ::回顾

    Determine if the following values of x are solutions to the equation 3 x 3 5 = 24
    ::确定以下 x 值是否是方程 3x35 的解决方案 24

    1. x = 32
      ::x=32x=32
    2. x = 32
      ::x32
    3. x = 8
      ::x=8x=8

    Solve the following equations. Round any decimal answers to 2 decimal places.
    ::解决以下方程式。 将小数点后的任何答案四舍五入到小数点后两位 。

    1. 2 x 3 2 = 54
      ::2x32=54
    2. 3 x 1 3 + 5 = 17
      ::3x13+5=17
    3. ( 7 x 3 ) 2 5 = 4
      :伤心7x-3)25=4
    4. ( 4 x + 5 ) 1 2 = x 4
      :伤心4x+5)12=x-4
    5. x 5 2 = 16 x 1 2
      ::x52=16x12
    6. ( 5 x + 7 ) 3 5 = 8
      :伤心5x+7)35=8
    7. 5 x 2 3 = 45
      ::5x23=45
    8. ( 7 x 8 ) 2 3 = 4 ( x 5 ) 2 3
      :伤心7x-8)23=4(x-5)23
    9. 7 x 3 7 + 9 = 65
      ::7x37+9=65
    10. 4997 = 5 x 3 2 3
      ::4997=5x32-3
    11. 2 x 3 4 = 686
      ::2x34=686
    12. x 3 = ( 4 x 3 ) 3 2
      ::x3=( 4x-3) 32

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。