复杂分数
Section outline
-
Gupta knows the area and width of a rectangle. He comes up with this equation for the length of the rectangle . What is the length of the rectangle in simplified form?
Complex Fractions
::复杂分数A complex fraction is a fraction that has fractions in the numerator and/or denominator. To simplify a complex fraction, you will need to combine all that you have learned about simplifying fractions in general.
::复数分数是指在分子和(或)分母中含有分数的分数。要简化一个复杂的分数,您需要将您所学到的关于一般简化分数的所有分数合并在一起。Let's simplify the following complex fractions.
::让我们简化以下复杂的部分。-
::9xx+23x2-4
Rewrite the complex fraction as a division problem.
::将复杂分数重写为分裂问题 。
::9xx+23x2 - 4=9xx+2}3x2 - 4Flip the second fraction, change the problem to multiplication and simplify.
::翻转第二段,将问题改为乘法和简化。
::9xx+23x2-4=9xx+2x2x2-43=9x3xxx2}(x+2)(x-2)(x-2)3=3x(x-2)-
::1x1+1x+14-1x
To simplify this complex fraction, we first need to add the fractions in the numerator and subtract the two in the denominator. The LCD of the numerator is and the denominator is just .
::为了简化这一复杂分数, 我们首先需要在分子中添加分数, 并在分母中减去这两个分数。 分子的LCD是 x( x+1) , 分数只是 x 。
::1x+1x1x+14-1x=1x1x1x1x1x1x1x1x1x1x1xxxxxxxx1xxxx1xxx1x1x1x1x1xxxxxxxx+1x1x1x1x1x1xxx1x1x1x1x1xx1x1x1xx1xx1x1x1xx1xxx1xxx1xxx1xx1xxx1xxxxxx1xxx1xxx1x1x1x1x1x1xxxx1xxx1x1x1x1x1x1x1x1x1x1xxx1xx1x1xxxx1x1x1x1xx1x1x1x1x1xx1x1x1x1x1x1x1xx1x1x1xx1x1x1x1xxx1x1xx1x1xxx1x1x1x1xx1xx1xx1xxxx1x1x1xx1xxx1xxxx1xxxxx1xxxx1xxxxxxxxxxx1xxxxxxxxxxx1xxxxxxxxxxxxx1xxxxxxx1xxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxDivide and simplify if possible.
::在可能的情况下,分开和简化。
::2x+1x( x+1) 4x -1x=2x1x1x( x+1) 4x -1x=2x1x( x+1) x4x -1x=2x1x( x+1) x4x -1x=2x1x1( x+1) (4x-1)-
::5-2x2+6x+8+6x8+xxxxx+46xx+2-2-2x+3x2-3x2-3xx-10
First, add the fractions in the numerator and subtract the ones in the denominator.
::首先,在分子中添加分数,并在分母中减去分数。
::5 -xx2+6x8+6x8+6x8+xx2+46x+2x2+2x2+2x2x2+2x2x2x3x3x3x3xxx10=5x(x+4)(x+2)+x2x+2xx-2x5x5x5x2x5x2x5x6x2+2x6x+6x6x+6x6x+6x6x+2x2x2x2x2xx2xx2xx2x2xx2x6x+5x2xx5xx2x4x+4x2x5x5x2x5xxxx2x2x6xxx5x2x5x+2x2x(x+2x2x)(x+2x)(x-5)6x5xxxxxx3x3x3x3x(x2+2)(x5)Now, rewrite as a division problem, flip, multiply, and simplify.
::现在,重写为分裂问题,翻转,乘法和简化。
::x2+x+2(x+4)(x+2)(x+2)(x-5)=x2+5(x+4)(x+2)(x+2)**4x-36(x+2)(x-5)=x2+5(x+4)(x+4)(x+2)(x+2)(x+2)__(x+2)(x+2)(x+2)(x-2)(x-5)4(x-9)
::=(x2+x+5)(x-5)(x-5)4(x+4)(x-9)Examples
::实例Example 1
::例1Earlier, you were asked to determine the length of a given rectangle in simplified form.
::早些时候,有人要求你以简化的形式确定给定矩形的长度。Rewrite the complex fraction as a division problem.
::将复杂分数重写为分裂问题 。
::2x2 - 12xxx+1=2x2 - 1=2x2 - *2xxx+1Flip the second fraction, change the problem to multiplication and simplify.
::翻转第二段,将问题改为乘法和简化。
::2x2 - 1 - 1x2 - 2xx2+1=2x2 - 1xxxx+12x=2(x+1)(x-1)(x-1)(x+1)(x+1)__(x+1)_(x+1)2x=1x2-xTherefore , the length of the rectangle in simplified form is .
::因此,简化形式的矩形长度为1x2-x。S implify the complex fractions.
::简化复杂的分数 。Example 2
::例2
::5x-20x2x-4xRewrite the fraction as a division problem and simplify.
::将分数重写为分裂问题并简化 。
::5x - 20x2x - 4x=5x - 20x2x - 4x=5(x-4)x2x - 4x=5xExample 3
::例3
::1-xx-2-2x-11+1xAdd the fractions in the numerator and denominator together.
::在分子和分母中同时添加分数。
::1-xxxxxx-1-1xx+1x=x-1x-1x-1x-11x-1=x-2x-1x-1xxxxxxxxxx-1xxx-1(1-xx)-2xxx(x-1-1)(1-x)-2xx(x-1)xxxx+1xx(x-1)xxxxxxxxxxxxxxxx2+1xx(x-1)xxx+1xxxxxxxNow, rewrite the fraction as a division problem and simplify.
::现在,将分数重写为分数问题并简化 。
::-x2+1x(x- 1) x+1x(x2- 1)xxxxxxxx(x1)xxxxxx+1}(x-1)xxx(x-1)xx(x-1)xxxxxxxxxx+1*1Example 4
::例4
::-3-4x2-5x+6+4-4x+3-1-4x2-5x+6+2-4x+3Add the numerator and the denominator of this complex fraction.
::添加此复杂分数的分子和分母。
::- 3-4x2-5x6+6x6(x+2)-5x+4+4+3-4-4x2-5x6+6+2-4-4x3+3=-3(-4x+3)(x+2+3)+2(4x+3)+(4x+3)+(x+2)×-1(x+2)(x+2)(x+2)+2)+2-4x3x3+3(x2)(x+2)(x+2)(4x+3)(x+2)+2)+2+2+2+2-44x+3(x+2)(x+2)(x+2)(x+3)(x+3)(x+2)+2+2+2+2+2+2+2-44x+3(x+2)(x+2)(x+2)(x+2)(x+2)(x)(x+2)=-4-4x+3x+3x+3(x)+(x+2)=4x-11-44x2-4x2-4x2x2x2x2x-2-5x2=5x2=+5x=+5x+5x+5x+6x+6x+6x+6x+6x+6x+6x+6x6x6x6x+6x6x6x6x6x6x+6x6x6x6x6x6x6x+4x6x6x=4x5x=4x=4x5x5x5x5x5x=4x=4x=4x=4x=4x=4x=4x=4x=4x=4x=4x=4xxxxx4xxxxxxxxxxxxxxx4x4x4x4x4x4x4x4x4x4x4x4x4x4x4x4x4x=4x=4x=4x=4xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxReview
::回顾Simplify the complex fractions.
::简化复杂的分数 。-
::2x587 -
::4x2-96xxx+3 -
::7x3x2+5x+635x2x+2 -
::24x+33x+116x+26x2-13x-5 -
::4-1+1x1x-5 -
::3x+4-1x3x-4x2+6x+8 -
::8-3xx+510x+5+5x+5x+1 -
::xx+3-42x+132x+1+6x2-9 -
::x+3x+2x5-x32x-4xxx-5 -
::2x5x2-13x-6+1x-345x+2-5x5x2-3x-2 -
::3xx2-4+x4x2+3x2x2+2x1x2-x-2-2x2+2x2+2x1+1
Use the following pattern to answer the next four questions.
::使用以下模式回答下四个问题。-
Find the next two terms in the pattern.
::查找图案中的下两个术语。 -
Using your graphing calculator, simplify each term in the pattern to a decimal.
::使用您的图形计算计算器,将模式中的每个词简化为小数点后的一个词。 -
Make a conjecture about this pattern and the number the terms appear to be approaching.
::对这种模式和术语似乎即将到来的数量进行猜测。 -
Find the sixth term in the pattern. Does it support your conjecture?
::查找模式中的第六学期。 它是否支持您的猜测 ?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -