Section outline

  • You draw a circle that is centered at ( 2 , 2 ) . You measure the diameter of the circle to be 18 units. Does the point ( 4 , 5 ) lie on the circle?
    ::您绘制了一个以 (- 2) 为中心的圆形。 您测量圆形的直径为 18 个单位。 点( 4 5) 是否在圆形上 ?

    Circles Centered at (h,k)
    ::居于 (h,k) 的圆圆

    When a circle is centered at the origin, the equation is x 2 + y 2 = r 2 . If we rewrite this equation, using the center , it would look like ( x 0 ) 2 + ( y 0 ) 2 = r 2 . Extending this idea to any point as the center, we would have ( x h ) 2 + ( y k ) 2 = r 2 , where ( h , k ) is the center.
    ::当圆以原点为中心时,方程式为 x2+y2=r2。如果我们使用中点重写此方程式,它看起来像(x-0)2+(y-0)2=r2) 。把这个想法扩展至中点的任何点,我们就会有(x-h)2+(y-k)2=r2, 其中(h,k)是中点。

    Let's find the center and radius of ( x + 1 ) 2 + ( y 3 ) 2 = 16 and graph.
    ::让我们找到( x+1) 2+(y-3) 2=16 和图形的中心和半径 。

    Using the general equation above, the center would be ( 1 , 3 ) and the radius is 16 or 4. To graph, plot the center and then go out 4 units up, down, to the left, and to the right.
    ::使用上面的一般方程,中心将是 (-1,3) , 半径是 16 或 4 。 要绘制图, 绘制中心, 然后从4个单元上、 下、 左、 右, 向右 。

    lesson content

    Now, let's find the equation of the circle with center ( 2 , 4 ) and radius 5.
    ::现在,让我们找到圆的方程,以中间(2,4)和半径5为中心。

    Plug in the center and radius to the equation and simplify.
    ::插在方程的中间和半径,并简化。

    ( x 2 ) 2 + ( y 4 ) 2 = 5 2 ( x 2 ) 2 + ( y 4 ) 2 = 25

    :sadx-2)2+(y-4)2=52(x-2)2+(y-4)2=25

    Finally, let's find the equation of the circle with center ( 6 , 1 ) and ( 5 , 2 ) is on the circle.
    ::最后,让我们找到圆的方程式, 以圆为中心( 6, - 1) 和( 5, 2) 在圆上 。

    In this problem , we are not given the radius. To find the radius, we must use the distance formula, d = ( x 2 x 1 ) 2 + ( y 2 y 1 ) 2 .
    ::在此问题上, 我们没有得到半径 。 要找到半径, 我们必须使用距离公式 d= (x2- x1) 2+ (y2-y1) 2 。

    r = ( 5 6 ) 2 + ( 2 ( 1 ) ) 2 = ( 1 ) 2 + 3 2 = 1 + 9 = 10

    ::r=( 5-6) 2+( 2- (-1) 1) 2=( 1) 2=( 1) 2+32=1+9=10

    Therefore, the equation of this circle is ( x 6 ) 2 + ( y ( 1 ) ) 2 = ( 10 ) 2 or ( x 6 ) 2 + ( y + 1 ) 2 = 10 .
    ::因此,这个圆的方程式是(x-6)2+(y-(-1))2=(10)2或(x-6)2+(y+1)2=10。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to determine if  the point  ( 4 , 5 )  lies on the circle. 
    ::早些时候,你被要求确定点(4,5)是否在圆上。

    In this lesson, you learned the equation of a circle that is centered somewhere other than the origin is ( x h ) 2 + ( y k ) 2 = r 2 , where ( h , k ) is the center.
    ::在此课中, 您会学到一个圆的方程式, 圆的中心点不是原点( x- h) 2+(y- k) 2=r2, 中心点是 (h, k) 。

    We are given that the center is ( 2 , 2 ) , so h = 2 and k = 2 . We are also given the diameter of the circle, but we need the radius. Recall that the radius is half the diameter, so r = 18 2 = 9 .
    ::我们被告知中心是 (-2,-2), 所以 h2 和 k2 。 我们也被给出圆的直径, 但我们需要半径。 回顾半径是直径的一半, 所以 r= 182=9 。

    If we plug these values into the equation for the circle, we get:
    ::如果我们将这些值插入圆的方程,我们就会得到:

    ( x h ) 2 + ( y k ) 2 = r 2 ( x ( 2 ) ) 2 + ( y ( 2 ) ) 2 = 9 2 ( x + 2 ) 2 + ( y + 2 ) 2 = 81

    :sadx-h)2+(y-k)2=r2(x-(-2))2+(y-2)2+(y-2)2=92(x+2)2+(y+2)2+(y+2)2=81

    Now to find if the point ( 4 , 5 ) lies on the circle we substitute 4 for x and 5 for y and see if the equation holds true.
    ::现在找到点( 4, 5) 是否位于我们替换 x 4 和 y 5 的圆上, 看看方程是否正确 。

    ( x + 2 ) 2 + ( y + 2 ) 2 = 81 ( 4 + 2 ) 2 + ( 5 + 2 ) 2 = ? 81 6 2 + 7 2 = ? 81 85 81

    :sadx+2)2+2+(y+2)2=81(4+2)2+(5+2)2+(5+2)2=?8162+72=?8188581

    Therefore, the point does not lie on the circle.
    ::因此,问题不在于圆圈上。

    Example 2
    ::例2

    Graph ( x + 4 ) 2 + ( y + 3 ) 2 = 25 and find the center and radius.
    ::图表 (x+4) 2+(y+3) 2=25, 并找到中心与半径 。

    The center is ( 4 , 3 ) and the radius is 5.
    ::中心是(-4,-3),半径是5。

    lesson content

    Example 3
    ::例3

    Find the equation of the circle with center ( 8 , 3 ) and ( 2 , 5 ) is on the circle.
    ::查找圆的方程式,以圆为中心(-8,3)和(-2,5)在圆上。

    Use the distance formula to find the radius.
    ::使用距离公式找到半径 。

    r = ( 2 ( 8 ) ) 2 + ( 5 3 ) 2 = 10 2 + ( 8 ) 2 = 100 + 64 = 164

    ::r=(2-(-8))2+(-5-3)2=102+(-8)2=100+64=164

    The equation of this circle is ( x + 8 ) 2 + ( y 3 ) 2 = 164 .
    ::此圆的方程式是 (x+8) 2+(y-3)2=164。

    Example 4
    ::例4

    The endpoints of a diameter of a circle are ( 3 , 1 ) and ( 9 , 6 ) . Find the equation.
    ::圆形直径的终点是(-3,1)和(9,6),找出方程。

    In this example , we are not given the center or radius. We can find the length of the diameter using the distance formula and then divide it by 2.
    ::在此示例中, 我们没有得到中心或半径 。 我们可以使用距离公式找到直径的长度, 然后将其除以 2 。

    d = ( 9 ( 3 ) ) 2 + ( 6 1 ) 2 = 12 2 + 5 2 The radius is   13 ÷ 2 = 13 2 . = 144 + 25 = 169 = 13

    ::d=( 9- (- 3)) 2+( 6- 1) 2=122+52 半径为 132=132. =144+25=169=13

    Now, we need to find the center. Use the midpoint formula with the endpoints.
    ::现在,我们需要找到中间点。使用中点公式和端点。

    c = ( 3 + 9 2 , 1 + 6 2 ) = ( 3 , 7 2 )

    ::c=(-3+92,1+62)=(3,72)

    Therefore, the equation is ( x 3 ) 2 + ( y 7 2 ) 2 = 169 4 .
    ::因此,等式是(x-3-3)2+(y-72)2=1694。

    Review
    ::回顾

    For questions 1-4, match the equation with the graph.
    ::对于问题14, 将方程式与图表匹配 。

    lesson content

    1. ( x 8 ) 2 + ( y + 2 ) 2 = 4
      :sadx-8)2+(y+2)2=4
    2. x 2 + ( y 6 ) 2 = 9
      ::x2+(y-6)2=9
    3. ( x + 2 ) 2 + ( y 3 ) 2 = 36
      :sadx+2)2+(y-3)2=36
    4. ( x 4 ) 2 + ( y + 4 ) 2 = 25
      :sadx-4)2+(y+4)2=25

    Graph the following circles. Find the center and radius.
    ::绘制以下圆形图,找到中间和半径

    1. ( x 2 ) 2 + ( y 5 ) 2 = 16
      :sadx-2)2+(y-5)2=16
    2. ( x + 4 ) 2 + ( y + 3 ) 2 = 18
      :sadx+4)2+(y+3)2=18
    3. ( x + 7 ) 2 + ( y 1 ) 2 = 8
      :sadx+7)2+(y-1)2=8

    Find the equation of the circle, given the information below.
    ::查找圆形的方程,并给出以下信息。

    1. center: ( 3 , 3 ) radius: 7
      ::半径: 7
    2. center: ( 7 , 6 ) radius: 15
      ::中中sad-7,6)半径: 15
    3. center: ( 8 , 1 ) point on circle: ( 0 , 14 )
      ::中心 : (8, - 1) 圆上的点 : (0, 14)
    4. center: ( 2 , 5 ) point on circle: ( 3 , 2 )
      ::中心sad-2,-5)圆上点sad3,2)
    5. diameter endpoints: ( 4 , 1 ) and ( 6 , 3 )
      ::直径端点sad-4,1)和(-6,3)
    6. diameter endpoints: ( 5 , 8 ) and ( 11 , 2 )
      ::直径端点sad5,-8)和(11,2)
    7. Is ( 9 , 12 ) on the circle ( x + 5 ) 2 + ( y 6 ) 2 = 54 ? How do you know?
      :sad- 9, 12) 是圆( x+5) 2+(y-6) 2=54? 你怎么知道 ?
    8. Challenge Use the following steps to find the equation of the tangent line to the circle with center ( 3 , 4 ) and the point of tangency  ( 1 , 8 ) .
      ::挑战 使用以下步骤寻找正切线与圆的方程(3,-4)和切点(-1,8)。
    1. Find the slope of the radius from the center to  ( 1 , 8 ) .
      ::查找半径的斜坡,从中间到(- 1, 8) 。
    2. Find the perpendicular slope to (a). This is the slope of the tangent line.
      ::找到(a)的垂直斜坡。这是正切线的斜坡。
    3.  Use the slope from (b) and the given point to find the equation of the tangent line.
      ::使用 (b) 的斜坡和给定点查找正切线的方程。
    1. Extension Rewrite the equation of the circle, x 2 + y 2 + 4 x 8 y + 11 = 0 in standard form by completing the square for both the x and y terms. Then, find the center and radius.
      ::扩展名重写圆圆的方程式, x2+y2+4x-8y+11=0, 以标准格式填写, 以 x 和 y 条件填写正方形。 然后, 找到中间和半径 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。