居于 (h, k) 的圆圆
章节大纲
-
You draw a circle that is centered at . You measure the diameter of the circle to be 18 units. Does the point lie on the circle?
::您绘制了一个以 (- 2) 为中心的圆形。 您测量圆形的直径为 18 个单位。 点( 4 5) 是否在圆形上 ?Circles Centered at (h,k)
::居于 (h,k) 的圆圆When a circle is centered at the origin, the equation is . If we rewrite this equation, using the center , it would look like . Extending this idea to any point as the center, we would have , where is the center.
::当圆以原点为中心时,方程式为 x2+y2=r2。如果我们使用中点重写此方程式,它看起来像(x-0)2+(y-0)2=r2) 。把这个想法扩展至中点的任何点,我们就会有(x-h)2+(y-k)2=r2, 其中(h,k)是中点。Let's find the center and radius of and graph.
::让我们找到( x+1) 2+(y-3) 2=16 和图形的中心和半径 。Using the general equation above, the center would be and the radius is or 4. To graph, plot the center and then go out 4 units up, down, to the left, and to the right.
::使用上面的一般方程,中心将是 (-1,3) , 半径是 16 或 4 。 要绘制图, 绘制中心, 然后从4个单元上、 下、 左、 右, 向右 。Now, let's find the equation of the circle with center and radius 5.
::现在,让我们找到圆的方程,以中间(2,4)和半径5为中心。Plug in the center and radius to the equation and simplify.
::插在方程的中间和半径,并简化。
:x-2)2+(y-4)2=52(x-2)2+(y-4)2=25
Finally, let's find the equation of the circle with center and is on the circle.
::最后,让我们找到圆的方程式, 以圆为中心( 6, - 1) 和( 5, 2) 在圆上 。In this problem , we are not given the radius. To find the radius, we must use the distance formula, .
::在此问题上, 我们没有得到半径 。 要找到半径, 我们必须使用距离公式 d= (x2- x1) 2+ (y2-y1) 2 。
::r=( 5-6) 2+( 2- (-1) 1) 2=( 1) 2=( 1) 2+32=1+9=10Therefore, the equation of this circle is or .
::因此,这个圆的方程式是(x-6)2+(y-(-1))2=(10)2或(x-6)2+(y+1)2=10。Examples
::实例Example 1
::例1Earlier, you were asked to determine if the point lies on the circle.
::早些时候,你被要求确定点(4,5)是否在圆上。In this lesson, you learned the equation of a circle that is centered somewhere other than the origin is , where is the center.
::在此课中, 您会学到一个圆的方程式, 圆的中心点不是原点( x- h) 2+(y- k) 2=r2, 中心点是 (h, k) 。We are given that the center is , so and . We are also given the diameter of the circle, but we need the radius. Recall that the radius is half the diameter, so .
::我们被告知中心是 (-2,-2), 所以 h2 和 k2 。 我们也被给出圆的直径, 但我们需要半径。 回顾半径是直径的一半, 所以 r= 182=9 。If we plug these values into the equation for the circle, we get:
::如果我们将这些值插入圆的方程,我们就会得到:
:x-h)2+(y-k)2=r2(x-(-2))2+(y-2)2+(y-2)2=92(x+2)2+(y+2)2+(y+2)2=81
Now to find if the point lies on the circle we substitute 4 for x and 5 for y and see if the equation holds true.
::现在找到点( 4, 5) 是否位于我们替换 x 4 和 y 5 的圆上, 看看方程是否正确 。
:x+2)2+2+(y+2)2=81(4+2)2+(5+2)2+(5+2)2=?8162+72=?8188581
Therefore, the point does not lie on the circle.
::因此,问题不在于圆圈上。Example 2
::例2Graph and find the center and radius.
::图表 (x+4) 2+(y+3) 2=25, 并找到中心与半径 。The center is and the radius is 5.
::中心是(-4,-3),半径是5。Example 3
::例3Find the equation of the circle with center and is on the circle.
::查找圆的方程式,以圆为中心(-8,3)和(-2,5)在圆上。Use the distance formula to find the radius.
::使用距离公式找到半径 。
::r=(2-(-8))2+(-5-3)2=102+(-8)2=100+64=164The equation of this circle is .
::此圆的方程式是 (x+8) 2+(y-3)2=164。Example 4
::例4The endpoints of a diameter of a circle are and . Find the equation.
::圆形直径的终点是(-3,1)和(9,6),找出方程。In this example , we are not given the center or radius. We can find the length of the diameter using the distance formula and then divide it by 2.
::在此示例中, 我们没有得到中心或半径 。 我们可以使用距离公式找到直径的长度, 然后将其除以 2 。
::d=( 9- (- 3)) 2+( 6- 1) 2=122+52 半径为 132=132. =144+25=169=13Now, we need to find the center. Use the midpoint formula with the endpoints.
::现在,我们需要找到中间点。使用中点公式和端点。
::c=(-3+92,1+62)=(3,72)Therefore, the equation is .
::因此,等式是(x-3-3)2+(y-72)2=1694。Review
::回顾For questions 1-4, match the equation with the graph.
::对于问题14, 将方程式与图表匹配 。-
:x-8)2+(y+2)2=4
-
::x2+(y-6)2=9 -
:x+2)2+(y-3)2=36
-
:x-4)2+(y+4)2=25
Graph the following circles. Find the center and radius.
::绘制以下圆形图,找到中间和半径-
:x-2)2+(y-5)2=16
-
:x+4)2+(y+3)2=18
-
:x+7)2+(y-1)2=8
Find the equation of the circle, given the information below.
::查找圆形的方程,并给出以下信息。-
center:
radius: 7
::半径: 7 -
center:
radius:
::中中-7,6)半径: 15
-
center:
point on circle:
::中心 : (8, - 1) 圆上的点 : (0, 14) -
center:
point on circle:
::中心-2,-5)圆上点
3,2)
-
diameter endpoints:
and
::直径端点-4,1)和(-6,3)
-
diameter endpoints:
and
::直径端点5,-8)和(11,2)
-
Is
on the circle
? How do you know?
:- 9, 12) 是圆( x+5) 2+(y-6) 2=54? 你怎么知道 ?
-
Challenge
Use the following steps to find the equation of the tangent line to the circle with center
and the point of tangency
.
::挑战 使用以下步骤寻找正切线与圆的方程(3,-4)和切点(-1,8)。
-
Find the slope of the radius from the center to
.
::查找半径的斜坡,从中间到(- 1, 8) 。 -
Find the perpendicular slope to (a). This is the slope of the tangent line.
::找到(a)的垂直斜坡。这是正切线的斜坡。 -
Use the slope from (b) and the given point to find the equation of the tangent line.
::使用 (b) 的斜坡和给定点查找正切线的方程。
-
Extension
Rewrite the equation of the circle,
in standard form by completing the square for both the
and
terms. Then, find the center and radius.
::扩展名重写圆圆的方程式, x2+y2+4x-8y+11=0, 以标准格式填写, 以 x 和 y 条件填写正方形。 然后, 找到中间和半径 。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -