章节大纲

  • Your homework assignment is to graph the 9 ( y + 2 ) 2 4 ( x 3 ) 2 = 36 . What are the vertices of your graph?
    ::您的作业任务是绘制 9 (y+2) 2 - 4 (x- 3) 2= 36。 您的图表的顶点是什么 ?

    Hyperbolas Centered at (h,k)
    ::以 (h,k) 居中

    Just like you have learned previously, a hyperbola does not always have to be placed with its center at the origin. If the center is ( h , k ) the entire ellipse will be shifted h units to the left or right and k units up or down. The equation becomes ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 . We will address how the vertices, co-vertices, and foci change in the next problem .
    ::正如你以前所学到的, 超双波拉并非总要与它的中心放在原点。 如果中心是 (h, k) , 整个椭圆将被移动 h 单位到左边或右边, k 单位向上或向下。 方程式会变成 (x-h) 2a2- (y- k) 2b2=1. 。 我们将解决下个问题中脊椎、 共垂直和角变化的方式 。

    Let's graph ( x 2 ) 2 16 ( y + 1 ) 2 9 = 1 . Then, let's find the vertices, foci, and asymptotes.
    ::让我们绘制图表( x-2) 216 - (y+1) 29=1。 然后, 让我们找到顶点、 福西 和 微粒 。

    First, we know this is a horizontal hyperbola because the x term is first. Therefore, the center is ( 2 , 1 ) and a = 4 and b = 3 . Use this information to graph the hyperbola.
    ::首先,我们知道这是一个水平双曲线, 因为 x 术语是第一个。 因此, 中心是 (2, - 1) 和 a= 4 和 b= 3 。 使用此信息来绘制双曲线图 。

    To graph, plot the center and then go out 4 units to the right and left and then up and down 3 units. Draw the box and asymptotes.
    ::绘制图图,绘制中心图,然后从4个单元向右和向左,然后向上和向下绘制3个单元图。绘制方框和微粒。

    lesson content

    This is also how you can find the vertices. The vertices are ( 2 ± 4 , 1 ) or ( 6 , 1 ) and ( 2 , 1 ) .
    ::也正是如此,您才能找到顶层。顶层是(24,-1)或(6,-1)和(-2,-1)或(-2,-1)。

    To find the foci, we need to find c using c 2 = a 2 + b 2 .
    ::要找到foci, 我们需要使用 c2=a2+b2 找到 c。

    c 2 = 16 + 9 = 25 c = 5


    ::c2=16+9=25c=5

    Therefore, the foci are ( 2 ± 5 , 1 ) or ( 7 , 1 ) and ( 3 , 1 ) .
    ::因此,核心是(2-5,-1)或(7,-1)和(-3,-1)。

    To find the asymptotes, we have to do a little work to find the y -intercepts. We know that the slope is ± b a or ± 3 4 and they pass through the center. Let’s write each asymptote in point-slope form using the center and each slope.
    ::要找到微粒,我们必须做点小工作才能找到 Y 截面。 我们知道斜坡是 ba 或 34 , 并且它们穿过中心。 让我们用中间和每个斜坡来以微粒形式写每个微粒。

    y 1 = 3 4 ( x + 2 ) and y 1 = 3 4 ( x + 2 )
    ::y- 1=34(x+2) y- 1\\\\ 34(x+2)

    Simplifying each equation, the asymptotes are y = 3 4 x 5 2 and y = 3 4 x + 1 2 .
    ::简化每个方程式时, 空数为 y= 34x-52 和 y= 34x+12 。

    From this problem, we can create formulas for finding the vertices, foci, and asymptotes of a hyperbola with center ( h , k ) . Also, when graphing a hyperbola, not centered at the origin, make sure to plot the center.
    ::从这个问题中,我们可以创建公式来寻找具有中枢(h,k)的超重波拉的顶部、顶部和微粒。此外,在绘制不以原点为中心的超重波拉图时,确保绘制中枢。

    Orientation Equation Vertices Foci Asymptotes
    Horizontal ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 ( h ± a , k ) ( h ± c , k ) y k = ± b a ( x h )
    Vertical ( y k ) 2 a 2 + ( x h ) 2 b 2 = 1 ( h , k ± a ) ( h , k ± c ) y k = ± a b ( x h )

    Now, let's find the equation of the hyperbola with vertices ( 3 , 2 ) and ( 7 , 2 ) and focus ( 5 , 2 ) .
    ::现在,让我们来看看超波拉的方程式, 包括脊椎(- 3, 2) 和( 7, 2) 和焦点(- 5, 2) 。

    These two vertices create a horizontal transverse axis , making the hyperbola horizontal. If you are unsure, plot the given information on a set of axes. To find the center, use the midpoint formula with the vertices.
    ::这两个顶点创建了横向横向轴,使双波拉水平。如果您不确定,请在一组轴上绘制给定信息。要找到中心,请使用中点公式和顶点。

    ( 3 + 7 2 , 2 + 2 2 ) = ( 4 2 , 4 2 ) = ( 2 , 2 )

    The distance from one of the vertices to the center is a , | 7 2 | = 5 . The distance from the center to the given focus is c , | 5 2 | = 7 . Use a and c to solve for b .
    ::从一个顶端到中心之间的距离是 7 -2 5 。 从中心到给定焦点的距离是 c, 5 - 2 。 使用 a 和 c 解答 b 。

    7 2 = 5 2 + b 2 b 2 = 24 b = 2 6


    ::72=52+b2b2=24b=26

    Therefore, the equation is ( x 2 ) 2 25 ( y 2 ) 2 24 = 1 .
    ::因此,等式是(x-2)225-(y-2)224=1。

    Finally, let's graph 49 ( y 3 ) 2 25 ( x + 4 ) 2 = 1225 and find the foci.
    ::最后,让我们用图49(y-33)2 - 25(x+4)2=1225 并找到介质。

    First we have to get the equation into standard form, like the equations above. To make the right side 1, we need to divide everything by 1225.
    ::首先,我们必须把方程式变成标准的形式,像上面的方程式一样。为了右侧一,我们需要把所有东西除以1225。

    49 ( y 3 ) 2 1225 25 ( x + 4 ) 2 1225 = 1225 1225 ( y 3 ) 2 25 ( x + 4 ) 2 49 = 1


    ::49是的-33)-21225-225(x+4)-21225=12251225(y-33)-225-(x+4)249=1

    Now, we know that the hyperbola will be vertical because the y -term is first.
    ::现在,我们知道超波拉会是垂直的 因为y-term是第一个。

    a = 5 , b = 7 and the center is ( 4 , 3 ) .
    ::a=5,b=7,中心为(-4,3)。

    lesson content

    To find the foci, we first need to find c by using c 2 = a 2 + b 2 .
    ::要找到角,我们首先需要通过使用 c2=a2+b2 来找到 c。

    c 2 = 49 + 25 = 74 c = 74


    ::c2=49+25=74c74

    The foci are ( 4 , 3 ± 74 ) or ( 4 , 11.6 ) and ( 4 , 5.6 ) .
    ::地方为(-4,374)或(-4,11.6)和(-4,5.6)。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to identify  the vertices of the  graph of the hyperbola defined by 9 ( y + 2 ) 2 4 ( x 3 ) 2 = 36.
    ::早些时候,有人要求您确定由 9(y+2)2-2-4(x-3)2=36定义的双倍波拉图的顶点。

    First we need to get the equation in standard form ( y k ) 2 a 2 + ( x h ) 2 b 2 = 1 , so we divide by 36.
    ::首先,我们需要以标准格式(y-k) 2a2+(x-h) 2b2=1 获得方程式,所以我们除以36。

    9 ( y + 2 ) 2 4 ( x 3 ) 2 = 36 9 ( y + 2 ) 2 36 4 ( x 3 ) 2 36 = 36 36 ( y + 2 ) 2 4 ( x 3 ) 2 9 = 1


    ::9(y+2)2-2-4(x-33)2=369(y+2)236-4(x-33)236=3636(y+2)24-(x-33)29=1

    Because the y -term is first, we can now see that the vertices are ( h , k ± a ) ( 3 , 2 ± 2 ) . That is, ( 3 , 0 ) and ( 3 , 4 )
    ::因为y-term是第一个,我们现在可以看到,顶部是(h,ka)(3,-22)。 也就是说,(3,0)和(3,4)

    Example 2
    ::例2

    Find the center, vertices, foci, and asymptotes of ( y 1 ) 2 81 ( x + 5 ) 2 16 = 1 .
    ::查找(y- 1) 281 - (x+5) 216=1 的中心、 顶部、 福西 和小数点的(y- 1) 281 - (x+5) 216=1 。

    The center is ( 5 , 1 ) , a = 81 = 9 and b = 16 = 4 , and the hyperbola is horizontal because the y -term is first. The vertices are ( 5 , 1 ± 9 ) or ( 5 , 10 ) and ( 5 , 8 ) . Use c 2 = a 2 + b 2 to find c .
    ::中心是 (- 5, 1, a81=9 和 b16=4) , 双曲线是水平的, 因为 Y- 期是第一。 顶部是 (- 5, 1+9) 或 (- 5, 10) 和 (- 5, 8) 。 使用 c2=a2+b2 来查找 c 。

    c 2 = 81 + 16 = 97 c = 97


    ::c2=81+16=97c=97

    The foci are ( 5 , 1 + 97 ) and ( 5 , 1 97 ) .
    ::地方是(-5,1-97)和(-5,1-97)。

    The asymptotes are y 1 = ± 9 4 ( x + 5 ) or y = 9 4 x + 12 1 4 and
    ::符号数是 y - 1\\\\\ 94( x+5) 或 y= 94x+1214 和

    y = 9 4 x 10 1 4 .
    ::y94x -1014。

    Example 3
    ::例3

    Graph 25 ( x 3 ) 2 4 ( y 1 ) 2 = 100 and find the foci.
    ::图25(x-3)2-4(y-1)2=100,并找到角。

    Change this equation to standard form in order to graph.
    ::将此方程式更改为标准格式以图示 。

    25 ( x 3 ) 2 100 4 ( y 1 ) 2 100 = 100 100 ( x 3 ) 2 4 ( y 1 ) 2 25 = 1


    ::25(x-3)2100-4(y-1)2100=100100(x-3)24-(y-1)225=1

    center: ( 3 , 1 ) , a = 2 , b = 5
    ::中心 : (3, 1), a= 2, b= 5

    Find the foci.
    ::找到怪胎 找到怪胎 找到怪胎 找到怪胎 找到怪胎

    c 2 = 25 + 4 = 29 c = 29


    ::c2=25+4=29c=29

    The foci are ( 3 , 1 + 29 ) and ( 3 , 1 29 ) .
    ::方块是(3,129)和(3,129)。

    Example 4
    ::例4

    Find the equation of the hyperbola with vertices ( 6 , 3 ) and ( 6 , 5 ) and focus ( 6 , 7 ) .
    ::找出高重波的等式,加上顶部(-6、-3)和(-6、5)以及重点(-6、7)。

    The vertices are ( 6 , 3 ) and ( 6 , 5 ) and the focus is ( 6 , 7 ) . The transverse axis is going to be vertical because the x -value does not change between these three points. The distance between the vertices is | 3 5 | = 8 units, making a = 4 . The midpoint between the vertices is the center.
    ::顶点是 (-6) 和 (-6) , 焦点是 (-6) 。 横轴将是垂直的, 因为 X 值在上述三点之间没有变化 。 顶点之间的距离是 3 - 5 = 8 单位, 得出 a= 4 。 顶点之间的中点是 中点 。

    ( 6 , 3 + 5 2 ) = ( 6 , 2 2 ) = ( 6 , 1 )

    The focus is ( 6 , 7 ) and the distance between it and the center is 6 units, or c . Find b .
    ::焦点是 (-6,7) , 中心与中心之间的距离是 6 个单位, 或 c. 查找 b.

    36 = b 2 + 16 20 = b 2 b = 20 = 2 5


    ::36=b2+1620=b2b=20=25

    The equation of the hyperbola is ( y 1 ) 2 16 ( x + 6 ) 2 20 = 1 .
    ::双倍波拉的方程式为(y-1)216-(x+6)220=1。

    Review
    ::回顾

    Find the center, vertices, foci, and asymptotes of each hyperbola below.
    ::找到下方每个超重波的中心、 脊椎、 福西 和微粒。

    1. ( x + 5 ) 2 25 ( y + 1 ) 2 36 = 1
      :伤心x+5)225-(y+1)236=1
    2. ( y + 2 ) 2 16 ( x 6 ) 2 = 16
      :伤心y+2)2-2-16(x-6)2=16
    3. ( y 2 ) 2 9 ( x 3 ) 2 49 = 1
      :伤心y-2)29-(x-3)249=1
    4. 25 x 2 64 ( y 6 ) 2 = 1600
      ::25x2-64(y-6)2=1600
    5. ( x 8 ) 2 ( y 4 ) 2 9 = 1
      :伤心x-8)2-(y-4)29=1
    6. 81 ( y + 4 ) 2 4 ( x + 5 ) 2 = 324
      ::81(y+4)2-4(x+5)2=324
    7. Graph the hyperbola in #1.
      ::在 # 1 中绘制双曲线图 。
    8. Graph the hyperbola in #2.
      ::在 # 2 中绘制双曲线图 。
    9. Graph the hyperbola in #5.
      ::在 # 5 中绘制双曲线图。
    10. Graph the hyperbola in #6.
      ::在 # 6 中绘制双曲线图。

    Using the information below, find the equation of each hyperbola.
    ::使用以下信息,找到每个超重波的方程式。

    1. vertices: ( 2 , 3 ) and ( 8 , 3 ) b = 7
      ::脊椎伤心-2,-3)和(8,-3)b=7
    2. vertices: ( 5 , 6 ) and ( 5 , 12 ) focus: ( 5 , 15 )
      ::脊椎伤心5,6)和(5,12)重点伤心5,15)
    3. asymptote: y + 3 = 4 9 ( x + 1 ) horizontal transverse axis
      ::浮点图 : y+3=49( x+1) 水平反向轴
    4. foci: ( 11 , 4 ) and ( 1 , 4 ) vertex: ( 8 , 4 )
      ::foci伤心-11,-4)和(1,-4)顶部伤心-8,-4)
    5. Extension Rewrite the equation of the hyperbola, 49 x 2 4 y 2 + 490 x 16 y + 1013 = 0 in standard form, by completing the square for both the x and y terms.
      ::扩展名重写标准格式的49x2-4y2+490x-16y+1013=0超重波的方程式,填写x和y条件的正方形。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。