10.9 (h, k) 以(h, k) 居中
Section outline
-
Your homework assignment is to graph the 9 ( y + 2 ) 2 − 4 ( x − 3 ) 2 = 36 . What are the vertices of your graph?
::您的作业任务是绘制 9 (y+2) 2 - 4 (x- 3) 2= 36。 您的图表的顶点是什么 ?Hyperbolas Centered at (h,k)
::以 (h,k) 居中Just like you have learned previously, a hyperbola does not always have to be placed with its center at the origin. If the center is ( h , k ) the entire ellipse will be shifted h units to the left or right and k units up or down. The equation becomes ( x − h ) 2 a 2 − ( y − k ) 2 b 2 = 1 . We will address how the vertices, co-vertices, and foci change in the next problem .
::正如你以前所学到的, 超双波拉并非总要与它的中心放在原点。 如果中心是 (h, k) , 整个椭圆将被移动 h 单位到左边或右边, k 单位向上或向下。 方程式会变成 (x-h) 2a2- (y- k) 2b2=1. 。 我们将解决下个问题中脊椎、 共垂直和角变化的方式 。Let's graph ( x − 2 ) 2 16 − ( y + 1 ) 2 9 = 1 . Then, let's find the vertices, foci, and asymptotes.
::让我们绘制图表( x-2) 216 - (y+1) 29=1。 然后, 让我们找到顶点、 福西 和 微粒 。First, we know this is a horizontal hyperbola because the x term is first. Therefore, the center is ( 2 , − 1 ) and a = 4 and b = 3 . Use this information to graph the hyperbola.
::首先,我们知道这是一个水平双曲线, 因为 x 术语是第一个。 因此, 中心是 (2, - 1) 和 a= 4 和 b= 3 。 使用此信息来绘制双曲线图 。To graph, plot the center and then go out 4 units to the right and left and then up and down 3 units. Draw the box and asymptotes.
::绘制图图,绘制中心图,然后从4个单元向右和向左,然后向上和向下绘制3个单元图。绘制方框和微粒。This is also how you can find the vertices. The vertices are ( 2 ± 4 , − 1 ) or ( 6 , − 1 ) and ( − 2 , − 1 ) .
::也正是如此,您才能找到顶层。顶层是(24,-1)或(6,-1)和(-2,-1)或(-2,-1)。To find the foci, we need to find c using c 2 = a 2 + b 2 .
::要找到foci, 我们需要使用 c2=a2+b2 找到 c。c 2 = 16 + 9 = 25 c = 5
::c2=16+9=25c=5Therefore, the foci are ( 2 ± 5 , − 1 ) or ( 7 , − 1 ) and ( − 3 , − 1 ) .
::因此,核心是(2-5,-1)或(7,-1)和(-3,-1)。To find the asymptotes, we have to do a little work to find the y -intercepts. We know that the slope is ± b a or ± 3 4 and they pass through the center. Let’s write each asymptote in point-slope form using the center and each slope.
::要找到微粒,我们必须做点小工作才能找到 Y 截面。 我们知道斜坡是 ba 或 34 , 并且它们穿过中心。 让我们用中间和每个斜坡来以微粒形式写每个微粒。y − 1 = 3 4 ( x + 2 ) and y − 1 = − 3 4 ( x + 2 )
::y- 1=34(x+2) y- 1\\\\ 34(x+2)Simplifying each equation, the asymptotes are y = 3 4 x − 5 2 and y = − 3 4 x + 1 2 .
::简化每个方程式时, 空数为 y= 34x-52 和 y= 34x+12 。From this problem, we can create formulas for finding the vertices, foci, and asymptotes of a hyperbola with center ( h , k ) . Also, when graphing a hyperbola, not centered at the origin, make sure to plot the center.
::从这个问题中,我们可以创建公式来寻找具有中枢(h,k)的超重波拉的顶部、顶部和微粒。此外,在绘制不以原点为中心的超重波拉图时,确保绘制中枢。Orientation Equation Vertices Foci Asymptotes Horizontal ( x − h ) 2 a 2 − ( y − k ) 2 b 2 = 1 ( h ± a , k ) ( h ± c , k ) y − k = ± b a ( x − h ) Vertical ( y − k ) 2 a 2 + ( x − h ) 2 b 2 = 1 ( h , k ± a ) ( h , k ± c ) y − k = ± a b ( x − h ) Now, let's find the equation of the hyperbola with vertices ( − 3 , 2 ) and ( 7 , 2 ) and focus ( − 5 , 2 ) .
::现在,让我们来看看超波拉的方程式, 包括脊椎(- 3, 2) 和( 7, 2) 和焦点(- 5, 2) 。These two vertices create a horizontal transverse axis , making the hyperbola horizontal. If you are unsure, plot the given information on a set of axes. To find the center, use the midpoint formula with the vertices.
::这两个顶点创建了横向横向轴,使双波拉水平。如果您不确定,请在一组轴上绘制给定信息。要找到中心,请使用中点公式和顶点。( − 3 + 7 2 , 2 + 2 2 ) = ( 4 2 , 4 2 ) = ( 2 , 2 )
The distance from one of the vertices to the center is a , | 7 − 2 | = 5 . The distance from the center to the given focus is c , | − 5 − 2 | = 7 . Use a and c to solve for b .
::从一个顶端到中心之间的距离是 7 -2 5 。 从中心到给定焦点的距离是 c, 5 - 2 。 使用 a 和 c 解答 b 。7 2 = 5 2 + b 2 b 2 = 24 → b = 2 √ 6
::72=52+b2b2=24b=26Therefore, the equation is ( x − 2 ) 2 25 − ( y − 2 ) 2 24 = 1 .
::因此,等式是(x-2)225-(y-2)224=1。Finally, let's graph 49 ( y − 3 ) 2 − 25 ( x + 4 ) 2 = 1225 and find the foci.
::最后,让我们用图49(y-33)2 - 25(x+4)2=1225 并找到介质。First we have to get the equation into standard form, like the equations above. To make the right side 1, we need to divide everything by 1225.
::首先,我们必须把方程式变成标准的形式,像上面的方程式一样。为了右侧一,我们需要把所有东西除以1225。49 ( y − 3 ) 2 1225 − 25 ( x + 4 ) 2 1225 = 1225 1225 ( y − 3 ) 2 25 − ( x + 4 ) 2 49 = 1
::49-33)-21225-225(x+4)-21225=12251225(y-33)-225-(x+4)249=1
Now, we know that the hyperbola will be vertical because the y -term is first.
::现在,我们知道超波拉会是垂直的 因为y-term是第一个。a = 5 , b = 7 and the center is ( − 4 , 3 ) .
::a=5,b=7,中心为(-4,3)。To find the foci, we first need to find c by using c 2 = a 2 + b 2 .
::要找到角,我们首先需要通过使用 c2=a2+b2 来找到 c。c 2 = 49 + 25 = 74 c = √ 74
::c2=49+25=74c74The foci are ( − 4 , 3 ± √ 74 ) or ( − 4 , 11.6 ) and ( − 4 , − 5.6 ) .
::地方为(-4,374)或(-4,11.6)和(-4,5.6)。Examples
::实例Example 1
::例1Earlier, you were asked to identify the vertices of the graph of the hyperbola defined by 9 ( y + 2 ) 2 − 4 ( x − 3 ) 2 = 36.
::早些时候,有人要求您确定由 9(y+2)2-2-4(x-3)2=36定义的双倍波拉图的顶点。First we need to get the equation in standard form ( y − k ) 2 a 2 + ( x − h ) 2 b 2 = 1 , so we divide by 36.
::首先,我们需要以标准格式(y-k) 2a2+(x-h) 2b2=1 获得方程式,所以我们除以36。9 ( y + 2 ) 2 − 4 ( x − 3 ) 2 = 36 9 ( y + 2 ) 2 36 − 4 ( x − 3 ) 2 36 = 36 36 ( y + 2 ) 2 4 − ( x − 3 ) 2 9 = 1
::9(y+2)2-2-4(x-33)2=369(y+2)236-4(x-33)236=3636(y+2)24-(x-33)29=1Because the y -term is first, we can now see that the vertices are ( h , k ± a ) ( 3 , − 2 ± 2 ) . That is, ( 3 , 0 ) and ( 3 , − 4 )
::因为y-term是第一个,我们现在可以看到,顶部是(h,ka)(3,-22)。 也就是说,(3,0)和(3,4)Example 2
::例2Find the center, vertices, foci, and asymptotes of ( y − 1 ) 2 81 − ( x + 5 ) 2 16 = 1 .
::查找(y- 1) 281 - (x+5) 216=1 的中心、 顶部、 福西 和小数点的(y- 1) 281 - (x+5) 216=1 。The center is ( − 5 , 1 ) , a = √ 81 = 9 and b = √ 16 = 4 , and the hyperbola is horizontal because the y -term is first. The vertices are ( − 5 , 1 ± 9 ) or ( − 5 , 10 ) and ( − 5 , − 8 ) . Use c 2 = a 2 + b 2 to find c .
::中心是 (- 5, 1, a81=9 和 b16=4) , 双曲线是水平的, 因为 Y- 期是第一。 顶部是 (- 5, 1+9) 或 (- 5, 10) 和 (- 5, 8) 。 使用 c2=a2+b2 来查找 c 。c 2 = 81 + 16 = 97 c = √ 97
::c2=81+16=97c=97The foci are ( − 5 , 1 + √ 97 ) and ( − 5 , 1 − √ 97 ) .
::地方是(-5,1-97)和(-5,1-97)。The asymptotes are y − 1 = ± 9 4 ( x + 5 ) or y = 9 4 x + 12 1 4 and
::符号数是 y - 1\\\\\ 94( x+5) 或 y= 94x+1214 和y = − 9 4 x − 10 1 4 .
::y94x -1014。Example 3
::例3Graph 25 ( x − 3 ) 2 − 4 ( y − 1 ) 2 = 100 and find the foci.
::图25(x-3)2-4(y-1)2=100,并找到角。Change this equation to standard form in order to graph.
::将此方程式更改为标准格式以图示 。25 ( x − 3 ) 2 100 − 4 ( y − 1 ) 2 100 = 100 100 ( x − 3 ) 2 4 − ( y − 1 ) 2 25 = 1
::25(x-3)2100-4(y-1)2100=100100(x-3)24-(y-1)225=1center: ( 3 , 1 ) , a = 2 , b = 5
::中心 : (3, 1), a= 2, b= 5Find the foci.
::找到怪胎 找到怪胎 找到怪胎 找到怪胎 找到怪胎c 2 = 25 + 4 = 29 c = √ 29
::c2=25+4=29c=29The foci are ( 3 , 1 + √ 29 ) and ( 3 , 1 − √ 29 ) .
::方块是(3,129)和(3,129)。Example 4
::例4Find the equation of the hyperbola with vertices ( − 6 , − 3 ) and ( − 6 , 5 ) and focus ( − 6 , 7 ) .
::找出高重波的等式,加上顶部(-6、-3)和(-6、5)以及重点(-6、7)。The vertices are ( − 6 , − 3 ) and ( − 6 , 5 ) and the focus is ( − 6 , 7 ) . The transverse axis is going to be vertical because the x -value does not change between these three points. The distance between the vertices is | − 3 − 5 | = 8 units, making a = 4 . The midpoint between the vertices is the center.
::顶点是 (-6) 和 (-6) , 焦点是 (-6) 。 横轴将是垂直的, 因为 X 值在上述三点之间没有变化 。 顶点之间的距离是 3 - 5 = 8 单位, 得出 a= 4 。 顶点之间的中点是 中点 。( − 6 , − 3 + 5 2 ) = ( − 6 , 2 2 ) = ( − 6 , 1 )
The focus is ( − 6 , 7 ) and the distance between it and the center is 6 units, or c . Find b .
::焦点是 (-6,7) , 中心与中心之间的距离是 6 个单位, 或 c. 查找 b.36 = b 2 + 16 20 = b 2 b = √ 20 = 2 √ 5
::36=b2+1620=b2b=20=25The equation of the hyperbola is ( y − 1 ) 2 16 − ( x + 6 ) 2 20 = 1 .
::双倍波拉的方程式为(y-1)216-(x+6)220=1。Review
::回顾Find the center, vertices, foci, and asymptotes of each hyperbola below.
::找到下方每个超重波的中心、 脊椎、 福西 和微粒。-
(
x
+
5
)
2
25
−
(
y
+
1
)
2
36
=
1
:x+5)225-(y+1)236=1
-
(
y
+
2
)
2
−
16
(
x
−
6
)
2
=
16
:y+2)2-2-16(x-6)2=16
-
(
y
−
2
)
2
9
−
(
x
−
3
)
2
49
=
1
:y-2)29-(x-3)249=1
-
25
x
2
−
64
(
y
−
6
)
2
=
1600
::25x2-64(y-6)2=1600 -
(
x
−
8
)
2
−
(
y
−
4
)
2
9
=
1
:x-8)2-(y-4)29=1
-
81
(
y
+
4
)
2
−
4
(
x
+
5
)
2
=
324
::81(y+4)2-4(x+5)2=324 -
Graph the hyperbola in #1.
::在 # 1 中绘制双曲线图 。 -
Graph the hyperbola in #2.
::在 # 2 中绘制双曲线图 。 -
Graph the hyperbola in #5.
::在 # 5 中绘制双曲线图。 -
Graph the hyperbola in #6.
::在 # 6 中绘制双曲线图。
Using the information below, find the equation of each hyperbola.
::使用以下信息,找到每个超重波的方程式。-
vertices:
(
−
2
,
−
3
)
and
(
8
,
−
3
)
b
=
7
::脊椎-2,-3)和(8,-3)b=7
-
vertices:
(
5
,
6
)
and
(
5
,
−
12
)
focus:
(
5
,
−
15
)
::脊椎5,6)和(5,12)重点
5,15)
-
asymptote:
y
+
3
=
4
9
(
x
+
1
)
horizontal transverse axis
::浮点图 : y+3=49( x+1) 水平反向轴 -
foci:
(
−
11
,
−
4
)
and
(
1
,
−
4
)
vertex:
(
−
8
,
−
4
)
::foci-11,-4)和(1,-4)顶部
-8,-4)
-
Extension
Rewrite the equation of the hyperbola,
49
x
2
−
4
y
2
+
490
x
−
16
y
+
1013
=
0
in standard form, by completing the square for both the
x
and
y
terms.
::扩展名重写标准格式的49x2-4y2+490x-16y+1013=0超重波的方程式,填写x和y条件的正方形。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
(
x
+
5
)
2
25
−
(
y
+
1
)
2
36
=
1