Section outline

  • Without multiplying ( x 2 ) by itself five times, how could you expand  ( x 2 ) 5 ?
    ::不自行乘(x-2)五倍,你怎么扩大(x-2)5?

    Pascal's Triangle
    ::帕斯卡尔三角

    lesson content

    Each row begins and ends with a one. Each “interior” value in each row is the sum of the two numbers above it. For example, 2 + 1 = 3 and 10 + 10 = 20 . This pattern produces the symmetry in the triangle.
    ::每个行以一开头和结尾。每行的每个“内部”值是上方两个数字的和。例如, 2+1=3 和 10+10=20。此图示在三角形中产生对称。

    Another pattern that can be observed is that the row number is equal to the number of elements in that row. Row 1, for example has 1 element, 1. Row 2 has 2 elements, 1 and 1. Row 3 has 3 elements, 1, 2 and 1.
    ::另一个可以观察到的模式是,行号等于该行的元素数量。例如,行1有1个元素,行1有2个元素,行1有1个元素,行3有3个元素,1个元素,1个元素,2个元素,1个元素,1个元素,3个元素,1个元素,2个元素,1个元素,1个元素,1个元素,1个元素,3个元素,1个元素,2个元素,1个元素,1个元素,1个元素,1个元素,1个元素。

    A third pattern is that the second element in the row is equal to one less than the row number. For example, in row 5 we have 1, 4, 6, 4 and 1.
    ::第三个模式是,行中的第二个元素等于行号少一个元素。例如,在第5行,我们有1、4、6、4和1个元素。

    Let's continue the triangle to determine the elements in the 9 t h row of Pascal’s Triangle.
    ::让我们继续三角形来决定帕斯卡尔三角形第九排的元素。

    Following the pattern of adding adjacent elements to get the elements in the next row, we find hat the eighth row is: 1     7     21     35     35     21     7     1
    ::按照在下一行添加相邻元素以获取元素的模式,我们发现第八排的帽子是:1 7 21 35 35 35 35 21 7 1

    Now, continue the pattern again to find the 9 t h row: 1     8     28     56     70     56     28     8     1
    ::现在,继续这个图案 找到第九排: 1 8 28 56 70 56 28 8 1

    Now, let's expand the binomial ( a + b ) 4 and discuss the pattern within the exponents of each variable as well as the pattern found in the coefficients of each term.
    ::现在,让我们扩展二进制(a+b) 4, 讨论每个变量的指数内的模式以及每个术语的系数中发现的模式。

    ( a + b ) ( a + b ) ( a + b ) ( a + b ) ( a 2 + 2 a b + b 2 ) ( a 2 + 2 a b + b 2 ) a 4 + 2 a 3 b + a 2 b 2 + 2 a 3 b + 4 a 2 b 2 + 2 a b 3 + a 2 b 2 + 2 a b 3 + b 4 a 4 + 4 a 3 b + 6 a 2 b 2 + 4 a b 3 + b 4

    :sada) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a2) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)+ (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a) (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)+ (a)

    1. Take two binomials at a time and square them using ( a + b ) 2 = a 2 + 2 a b + b 2
      ::使用 (a+b) 2=a2+2ab+b2, 一次取取两个二进制, 平方
    2. Next, distribute each term in the first trinomial over each term in the second trinomial and collect like terms.
      ::接下来,在第一个三学期中将每个学期分配到第二个三学期,并收集同样的学期。

    We can see that the powers of a start with 4 (the degree of the binomial) and decrease by one each term while the powers of b start with zero and increase by one each term. The number of terms is 5 which is one more than the degree of the binomial. The coefficients of the terms are 1     4     6     4     1 , the elements of row 5 in Pascal’s Triangle.
    ::我们可以看到,从4个开始(二进制程度)到每学期减少一个学期,B学期减少一个学期,B学期减少一个学期,B学期增加一个学期。学期数是5个学期数,比二进制程度多一个学期数。学期的系数是14 6 4 1,是帕斯卡尔三角第5行的元素。

    Finally, let's use what was discovered in the previous problem  to expand ( x + y ) 6 .
    ::最后,让我们利用在前一个问题中发现的东西来扩展 (x+y) 6。

    The degree of this expansion is 6, so the powers of x will begin with 6 and decrease by one each term until reaching 0 while the powers of y will begin with zero and increase by one each term until reaching 6. We can write the variables in the expansion (leaving space for the coefficients) as follows:
    ::扩展程度为6, 因此x的权力将从6开始,每个任期减少一个,直到达到0, 而y的权力从零开始,每个任期增加一个,直到达到6, 我们可以将扩展中的变量(系数的留置空间)写如下:

    _ x 6   + _ x 5 y   + _ x 4 y 2   + _ x 3 y 3   + _ x 2 y 4   + _ x y 5   + _ y 6

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}==========================================================================================================

    In the previous problem  we observed that the coefficients for a fourth degree binomial were found in the fifth row of Pascal’s Triangle. Here we have a 6 t h degree binomial, so the coefficients will be found in the 7 t h row of Pascal’s Triangle. Now we can fill in the blanks with the correct coefficients.
    ::在上一个问题中,我们观察到,四度二进制系数出现在帕斯卡尔三角形第五行。 我们这里有六度二进制系数,因此这些系数将出现在帕斯卡尔三角形第七行。 现在我们可以用正确的系数填充空白。

    x 6 + 6 x 5 y + 15 x 4 y 2 + 20 x 3 y 3 + 15 x 2 y 4 + 6 x y 5 + y 6

    ::x6+6x5y+15x4y2+20x3y3+15x2y4+6x5+y6

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to expand the binomial  ( x 2 ) 5 .
    ::早些时候,有人要求你扩大二进制(x-2)5。

    To expand the binomial ( x 2 ) 5 , you could use Pascal's Triangle.
    ::要扩展二进制( x-2 5) , 您可以使用帕斯卡尔的三角形 。

    The degree of this expansion is 5, so the powers of x will begin with 5 and decrease by one each term until reaching 0 while the powers of y , which in this case is 2 , will begin with zero and increase by one each term until reaching 5. We can write the variables in the expansion (leaving space for the coefficients) as follows:
    ::扩展程度为5,因此x的权力将从5开始,每个任期减少一个,直到达到0,y的权力(在本案中为-2)将从零开始,每个任期增加一个,直到达到5。 我们可以将扩展中的变量(系数的留置空间)写如下:

    _ x 5   + _ x 4 y   + _ x 3 y 2   + _ x 2 y 3   + _ x y 4   + _ y 5

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}

    The coefficients for a fifth degree binomial can be found in the sixth row of Pascal’s Triangle. Now we can fill in the blanks with the correct coefficients, replacing y with 2 .
    ::第五度二进制系数可以在帕斯卡尔三角形第六行找到。 现在我们可以用正确的系数填空空, 替换 y 。

    1 x 5 + 5 x 4 ( 2 ) + 10 x 3 ( 2 ) 2 + 10 x 2 ( 2 ) 3 + 5 x ( 2 ) 4 + 1 ( 2 ) 5 x 5 10 x 4 + 40 x 3 80 x 2 + 80 x 32

    ::1x5+5x4(-2-2)+10x3(-2-2)+10x3(-2)2+10x2(-2)3+5x(-2)4+1(-2)4+1(-2)5x5-10x4+40x3-80x2+80x-32

    Example 2
    ::例2

    Write out the elements in row 10 of Pascal’s Triangle.
    ::将元素写在帕斯卡尔三角的第10行。

    We continued the triangle to find the 9 t h row earlier  and determined it  to be: 1     8     28     56     70     56     28     8     1
    ::我们继续三角形 之前找到了第九排 确定为: 1 8 28 56 70 56 28 8 1

    Subsequently, the 10 t h row is: 1     9     36     84     126     126     84     36     9     1
    ::随后,第十排为: 1 9 36 84 126 126 84 36 9 1

    Example 3
    ::例3

    Expand ( a + 4 ) 3 .
    ::展开(a+4) 3.


    a 3 + 3 a 2 ( 4 ) + 3 a ( 4 ) 2 + ( 4 ) 3 a 3 + 12 a 2 + 48 a + 64

    ::a3+3a2(4)+3a(4)+4a(4)2+(4)3a3+12a2+48a+64

    Example 4
    ::例4

    Write out the coefficients in the expansion of ( 2 x 3 ) 4 .
    ::写出扩大的系数(2x-3)4。


    ( 2 x ) 4 + 4 ( 2 x ) 3 ( 3 ) + 6 ( 2 x ) 2 ( 3 ) 2 + 4 ( 2 x ) ( 3 ) 3 + ( 3 ) 4 16 x 4 96 x 3 + 216 x 2 216 x + 81

    :sad2x)4+4+4(2x)3(3)+6(2x)(2-3)+4(2x)(3)+4(2x)(3)3+3(3)+(3)416x4-96x3+216x2-216x2+81)

    Review
    ::回顾

    1. Write out the elements in row 7 of Pascal’s Triangle.
      ::将元素写在帕斯卡尔三角形第7行。
    2. Write out the elements in row 13 of Pascal’s Triangle.
      ::将元素写在帕斯卡尔三角的第13行。

    Use Pascal’s Triangle to expand the following binomials.
    ::使用帕斯卡尔三角以扩展以下二进制。

    1. ( x 6 ) 4
      :sadx-6)4
    2. ( 2 x + 5 ) 6
      :sad2x+5)6
    3. ( 3 x ) 7
      :sad3-x)7
    4. ( x 2 2 ) 3
      :sadx2-2)3
    5. ( x + 4 ) 5
      :sadx+4)5
    6. ( 2 x 3 ) 4
      :sad2-十三)4
    7. ( a b ) 6
      :sada-b)6
    8. ( x + 1 ) 10
      :sadx+1)10

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。