Sine 和 Consine 图形图
Section outline
-
Your mission, should you choose to accept it, as Agent Trigonometry is to graph the function . What are the minimum and maximum of your graph?
::您的任务, 您是否愿意接受它, 作为Trigonology Agent 来绘制 y= 2cosx 的函数 。 您的图表的最小值和最大值是多少 ?Graphing Sine and Cosine
::Sine 和 Consine 图形图In this concept, we will take the unit circle and graph it on the Cartesian plane.
::在这个概念中,我们将用单位圆来图解这个单位圆,然后用笛卡尔飞机来图解它。To do this, we are going to “unravel” the unit circle. Recall that for the unit circle the coordinates are where is the central angle. To graph, rewrite the coordinates as where is the central angle, in radians. Below we expanded the sine coordinates for .
::为此,我们将“ unravel” 单位圆。 提醒注意对于单位圆来说, 坐标是 ° 的中心角( cos, sin) 。 要图形, y=sinx 将坐标重写为 x (x, sinx) 的中心角, 以弧度表示。 在下面, 我们将正弦坐标扩大为 3}4 。Notice that the curve ranges from 1 to -1. The maximum value is 1, which is at . The minimum value is -1 at . This “height” of the sine function is called the . The amplitude is the absolute value of average between the highest and lowest points on the curve.
::注意曲线从 1 到 - 1 。 最大值为 1 , 在 x @ @ 2 。 最小值为 - 1 , 在 x=3% 2 。 正弦函数的“ 高度” 称为 。 振幅是曲线上最高点和最低点之间的平均值的绝对值 。Now, look at the domain. It seems that, if we had continued the curve, it would repeat. This means that the sine curve is periodic . Look back at the unit circle, the sine value changes until it reaches . After , the sine values repeat. Therefore, the curve above will repeat every units, making the period . The domain is all real numbers.
::现在,看看这个域。 如果我们继续曲线, 它会重复。 这意味着正弦曲线是周期性的。 回顾单位圆, 正弦值会变化, 直到它达到 2Q。 在 2Q 之后, 正弦值会重复。 因此, 上面的曲线会重复每个 2Q 单位, 使时间段为 2Q 。 域是全部真实的数字 。Similarly, when we expand the cosine curve, , from the unit circle, we have:
::同样,当我们从单位圆中扩展余弦曲线y=cosx时,我们有:Notice that the range is also between 1 and -1 and the domain will be all real numbers. The cosine curve is also periodic, with a period of . If we draw the graph past , it would look like:
::注意范围也介于 1 和 - 1 之间, 域将全部为真实数字。 余弦曲线也是定期的, 时长为 2 。 如果我们将图画过 2, 它看起来像 :Comparing and (below), we see that the curves are almost identical, except that the sine curve starts at and the cosine curve starts at .
::比较 y=sinx 和 y=cosx (以下),我们看到曲线几乎完全相同,但正弦曲线以 y=0 开头,余弦曲线以 y=1开头。If we shift either curve units to the left or right, they will overlap. Any horizontal shift of a trigonometric function is called a phase shift .
::如果我们将曲线 2 单位向左或向右移动, 它们就会重叠。 三角函数的任何水平移动都被称为相移 。Let's identify the highlighted points on and below.
::让我们确定下面的 y=sinx 和y=cosx 上的亮点 。For each point, think about what the sine or cosine value is at those values. For point , , therefore the point is . For point , we have to work backwards because it is not exactly on a vertical line, but it is on a horizontal one. When is ? When or . By looking at point ’s location, we know it is the second option. Therefore, the point is .
::对于每一个点,请想一想这些值的正弦值或余弦值。 对于 A 点, sin4=22, 因此点是( 4, 22) 。 对于 B 点, 我们必须倒着工作, 因为它不完全在垂直线上, 而是在水平线上 。 当sinx12 时? 当 x= 76 或 116 时。 通过查看 B 点的位置, 我们知道这是第二个选项。 因此, 点是 (116, 12) 。 因此, 点是 (116, 12) 。For the cosine curve, point is the same as point because the for is the same. As for point , we use the same logic as we did for point . When does ? When or . Again, looking at the location of point , we know it is the second option. The point is .
::对于余弦曲线, C点与 A 点相同, 因为 + 4 相同。 至于 D 点, 我们使用的逻辑与 B 点相同 。 当 = x = 12 时? 当 x= 2 3 或 4 3 时 。 同样, 查看 D 点的位置, 我们知道这是第二个选项 。 点是 (4Q3 3 12 ) 。Amplitude
::振幅In addition to graphing and , we can stretch the graphs by placing a number in front of the sine or cosine, such as or . is the amplitude of the curve.
::除了绘制 y=sinx 和 y=cosx 外, 我们可以在正弦或余弦前放置数字, 如 y=asinx 或 y=acosx 。 a 表示曲线的振幅 。Let's graph over two periods.
::让我们在两个周期内绘制 y=3sinx 的图表。Start with the basic sine curve. Recall that one period of the parent graph, , is . Therefore, two periods will be . The 3 indicates that the range will now be from 3 to -3 and the curve will be stretched so that the maximum is 3 and the minimum is -3. The red curve is .
::以基本正弦曲线开始 。 提醒注意, 父图形的一个时段, y=sinx, 是 2。 因此, 两个时段将是 4。 3 表示范围现在为 3 到 - 3, 曲线将被拉伸, 最大值为 3, 最小值为 - 3 。 红曲线是 y= 3sinx 。Notice that the -intercepts are the same as the parent graph. Typically, when we graph a trigonometric function, we always show two full periods of the function to indicate that it does repeat.
::请注意 X 界面与父图形相同。 通常, 当我们绘制三角函数时, 我们总是显示两个完整的函数周期, 以显示它重复 。Now, let's graph over two periods.
::现在,让我们用Y=12cos=x来图两个时期。Now, the amplitude will be and the function will be “smooshed” rather than stretched.
::现在,振幅将是12,功能将是“消沉”而不是拉伸。Finally, let's graph over two periods.
::最后,让我们用两段时间来图表ysinx。The last two problems dealt with changing and was positive. Now, is negative. Just like with other functions, when the leading coefficient is negative, the function is reflected over the -axis. is in red.
::后两个问题涉及改变一个是正。 现在, 一个是负的。 就像其他函数一样, 当主要系数为负时, 该函数会反映在 x 轴上。 ysinx 是红色的 。Examples
::实例Example 1
::例1Earlier, you were asked to find the minimum and maximum of the graph .
::早些时候,你被要求找到 y=2cosx 的最小和最大图形 。The 2 in front of the cosine function indicates that the range will now be from 2 to –2 and the curve will be stretched so that the maximum is 2 and the minimum is –2.
::余弦函数前面的 2 表示范围现在从 2 到 - 2, 曲线将被拉伸, 最大值为 2 , 最小值为 - 2 。Example 2
::例2Is the point on ? How do you know?
::y=sinx是点(56,12)吗?你怎么知道?Substitute in the point for and and see if the equation holds true.
::以 x 和 y 的点替代, 看看方程是否正确 。
::12=sin( 56)This is true, so is on the graph.
::这是事实,所以图上是(5-6-12)图。Graph the following functions for two full periods.
::以下图示两个完整期间的函数。Example 3
::例3
::y=6xx y=6xxStretch the cosine curve so that the maximum is 6 and the minimum is -6.
::伸展余弦曲线,使最大值为6,最低值为-6。Example 4
::例4
::y 3cos x y 3cos xThe graph is reflected over the -axis and stretched so that the amplitude is 3.
::该图在 X 轴上方反射,并拉伸,使振幅为 3。Example 5
::例5
::y=32sinxThe fraction is equivalent to 1.5, making 1.5 the amplitude.
::分数等于1.5,使1.5成振幅。Review
::回顾-
Determine the exact value of each point on
or
.
::确定 y=sinx 或 y=cosx 上的每个点的准确值 。 -
List all the points in the interval
where
. Use the graph from #1 to help you.
::列出 sinx=cosx 的间距 [0,4] 中的所有点。 使用 # 1 的图表来帮助您 。 -
Draw from
from
. Find
and
. Plot these values on the curve.
::从 y=sinx 从 [ 0, 2] 中绘制。 查找 f3 和 f( 53)。 在曲线上绘制这些值 。
For questions 4-12, graph the sine or cosine curve over two periods.
::对于问题4-12,请用图形显示两个时期的正弦或余弦曲线。-
::y=2sinx -
::y 5cos x y 5cosx y 5cosx -
::y=14cosx -
::y y 23sin x y 23sin_x -
::y=4sinx -
::y$1.5cosx( y$1.5cosx) -
::y=53cosx -
::y=10sinx -
::y7.2sinx -
Graph
and
on the same set of axes. How many units would you have to shift the sine curve (to the left or right) so that it perfectly overlaps the cosine curve?
::图形 y=sinx 和 y=cosx 在同一组轴上。 您需要将正弦曲线( 向左或向右) 移动多少个单位才能完全重合余弦曲线 ? -
Graph
and
on the same set of axes. How many units would you have to shift the sine curve (to the left or right) so that it perfectly overlaps
?
::相同轴上的 y=sinx 和 ycosx 图形。 您需要将正弦曲线( 向左或向右) 移动多少个单位才能完全重合 ycosx ?
Write the equation for each sine or cosine curve below. for both questions.
::为下方的正弦或余弦曲线写出方程。 a>0 为两个问题写出方程。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
Determine the exact value of each point on
or
.