使用总和和差异公式查找精确的三角值
章节大纲
-
You measure an angle with your protractor to be . How could you find the exact sine of this angle without using a calculator?
::您用您的减速器测量角度为 165 {} 。 您如何在不使用计算器的情况下找到这个角度的正弦值 ?Sum and Difference Formulas
::总和和差额和差额公式You know that etc... from the special right triangles. In this concept, we will learn how to find the exact values of the trig functions for angles other than these multiples of and . Using the , we can find these exact trig values.
::您知道 sin3012,cos13522,tan3003,等等... 来自特殊的右三角形。在这个概念中,我们将学习如何找到除3045和603的倍数以外的角度的三角函数的精确值。使用这些参数,我们就能找到这些精确的三角值 。Sum and Difference Formulas
::总和和差额和差额公式
:ab)=sinacosbcosbbsin(ab) =cosçacosbsinbsinbtan(ab) =tanaatanbb1natanatanatanbbbb}(ab)
Find the exact values using the Sum and Difference Formulas:
::使用总和和差异公式查找准确值:sin75This is an example of where we can use the sine sum formula from above, , where and .
::这个例子说明我们可以从上面使用正数公式,sin(a+b)=sinacosb+cosçasinb,a=45和b=30。
:4530) (45303030304545453030302232+2212=6+24)
In general, and similar statements can be made for the other sum and difference formulas.
::一般而言,对于其他总和和差价公式,可以作sin(a+b)sina+sinb和类似的说明。Find the exact values using the Sum and Difference Formulas:
::使用总和和差异公式查找准确值: cos1112For this problem, we could use either the sum or difference cosine formula, or . Let’s use the sum formula .
::对于这个问题,我们可以使用总和或差额的余弦配方,1112=234或1112=764。让我们使用总和配方。
::=============================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================================Find the exact values using the Sum and Difference Formulas:
::使用总和和差异公式查找准确值: tan12
This angle is the difference between and .
::此角度是 4 和 3 之间的差 。
::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~This angle is also the same as . You could have also used this value and done and arrived at the same answer.
::此角度也与 2312 相同。 您也可以使用此值, 完成 tan( 4+53) 并达成相同的答案 。Examples
::实例Example 1
::例1Earlier, you were asked to find the exact value of without using the calculator.
::早些时候,你被要求在不使用计算器的情况下 找到sin"165"的准确价值。We can use the sine sum formula, , where and .
::我们可以使用正弦数公式,sin(a+b)=sinacosb+cosasinb, 其中a=120和b=45。
:12045) (12044444421202221222=624)
Example 2
::例2Find the exact value of .
::查找准确的 cos15 值 。
::==6+24 =6+24 ==6+24 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =Example 3
::例3Find the exact value of .
::查找 tan 255 的确切值 。
::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Review
::回顾Find the exact value of the following trig functions.
::查找以下三角函数的准确值 。-
::15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 18岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 15岁 -
::CO=512 -
::丹・345 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -
::COs(- 255) -
::问题13和12 -
::问题17=12 -
::来来来来来 15 15 -
::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
::三、三、四、四、四、四、四、四、四、四、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、六、八、八、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、十、 -
Now, use
from #1, and find
. Do you arrive at the same answer? Why or why not?
::现在,请使用1号的sin15, 并找到 sin345。 您是否达到相同的答案? 为什么或为什么不呢 ? -
Using
from #7, find
. What is another way you could find
?
::使用 # 7 的 cos 15 , 找到 cos 165 。 另一种方法是什么? 能找到 cos 165 ? -
Describe any patterns you see between the sine, cosine, and tangent of these “new” angles.
::描述您看到的这些“新”角度的正弦、连弦和正切之间的任何模式。 -
Using your calculator, find the
. Now, use the sum formula and your calculator to find the
using
and
.
::使用您的计算器, 找到 sin\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ -
Use the sine difference formula to find
with any two angles you choose. Do you arrive at the same answer? Why or why not?
::使用正弦差公式查找 sin\\\\ 142\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -
Challenge
Using
and
, show that
.
::使用sin(a+b) =sinacosb+cosasinb 和cos(a+b) =cosacosb-sinasinb 显示,tan(a+b) =tana+tanb1-tanatanatanatanb。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -