子类函数的阶段移位
Section outline
-
A periodic function that does not start at the sinusoidal axis or at a maximum or a minimum has been shifted horizontally. This horizontal movement allows for different starting points since a sine wave does not have a beginning or an end.
::不从正弦轴开始, 或最大或最小的周期函数被水平移动。 此水平移动允许不同的起点, 因为正弦波没有开始或结束 。What are five other ways of writing the function ?
::写函数 f(x) = 2sinx 的另外五种方式是什么?Phase Shift of Sinusoidal Functions
::子类函数的阶段移位The general sinusoidal function is:
::一般的正弦值函数是:
:xxx)+d)+(b(x+c)+(d)+(xx)+(xx)+
The constant controls the phase shift . Phase shift is the horizontal shift left or right for periodic functions. If then the sine wave is shifted left by . If then the sine wave is shifted right by 3. This is the opposite direction than you might expect, but it is consistent with the rules of transformations for all functions.
::常数 c 控制了相位移。 相位移是用于周期函数的水平向左或右移。 如果 c2, 则正弦波由 2 转移。 如果 c3 则正弦波由 3 转移。 这是与您预期相反的方向, 但与所有函数的转换规则是一致的 。To graph a function such as , first find the start and end of one period. Then sketch only that portion of the sinusoidal axis. Finally, plot the 5 important points for a cosine graph while keeping the in mind. The graph is shown below:
::要绘制函数, 如 f( x) = 3cos( x2) +1 , 请先找到一个周期的开始和结束。 然后只绘制正弦轴的部分。 最后, 绘制正弦图的5个重要点, 并记住。 图表显示如下 :Generally is always written to be positive. If you run into a situation where is negative, use your knowledge of even and odd functions to rewrite the function.
::b 一般是肯定的。如果遇到b为否定的情况,请使用您对偶数和奇数功能的知识重写该函数。
::cos( - x) =cos ( x) sin ( - x) sin ( x)Examples
::实例Example 1
::例1Earlier, you were asked to write in five different ways. The function can be rewritten an infinite number of ways.
::早些时候, 您被要求以五种不同的方式写入 f( x) = 2sinx 。 函数 f( x) = 2sinx 可以重写无数种方式 。
::22222222222222222222222222222222(x_88)22828It all depends on where you choose start and whether you see a positive or negative sine or cosine graph.
::这一切都取决于您选择的起始位置,以及您是否看到正正正正弦或负正弦或正弦图。Example 2
::例2Given the following graph, identify equivalent algebraic models.
::根据下图,确定等效代数模型。Either this is a sine function shifted right by or a cosine graph shifted left .
::要么是正弦函数由 +++ 4 向右移动, 要么是正弦图向左移动 5+4 。
:xx) =sin(x4) =cos(x+54) =cos(x+54)
Example 3
::例3At minutes William steps up 2 feet to sit at the lowest point of the Ferris wheel that has a diameter of 80 feet. A full hour later he finally is let off the wheel after making only a single revolution. During that hour he wondered how to model his height over time in a graph and equation.
::T=5分钟后,威廉升起2英尺,坐在直径为80英尺的Ferris轮的最低点。整整一小时后,他终于在一次革命后被从方向盘上解脱出来。 在那个时候,他想知道如何用图表和方程来模拟他的身高。Since the period is 60 which works extremely well with the in a circle, this problem will be shown in degrees.
::由于60岁这一时期在一个圆圈里与360极为有效,这一问题将以度表示。Time (minutes) Height (feet) 5 2 20 42 35 82 50 42 65 2 William chooses to see a negative cosine in the graph. He identifies the amplitude to be 40 feet. The vertical shift of the sinusoidal axis is 42 feet. The horizontal shift is 5 minutes to the right.
::威廉选择在图形中看到负余弦。 他将振幅确定为40英尺。 正弦轴的垂直移动为42英尺。 水平移动向右为5分钟。The period is 60 (not 65) minutes which implies when graphed in degrees.
::时间段为60分钟(不是65分钟),这意味着以度表示时 b=6。
::60=360bThus one equation would be:
::因此,一个等式是:
::f(x) +42 (6(x)-5)Example 4
::例4Tide tables report the times and depths of low and high tides. Here is part of tide report from Salem, Massachusetts dated September 19, 2006.
::潮汐表报告了低潮和高潮的时间和深度,这是2006年9月19日马萨诸塞州萨利姆的潮汐报告的一部分。10:15 AM
::上午10时15分9 ft.
::9英尺High Tide
::高潮下4:15 PM
::下午4:151 ft.
::1英尺Low Tide
::低潮下10:15 PM
::上午10时15分9 ft.
::9英尺High Tide
::高潮下Find an equation that predicts the height based on the time. Choose when carefully.
::查找一个根据时间预测高度的方程式。 仔细选择 t=0 的时间 。There are two logical places to set . The first is at midnight the night before and the second is at 10:15 AM. The first option illustrates a phase shift that is the focus of this concept, but the second option produces a simpler equation. Set to be at midnight and choose units to be in minutes.
::有两个逻辑位置可以设定 t=0 。 第一个是前一天午夜, 第二个是上午10: 15。 第一个选项显示的是这个概念的焦点, 但第二个选项产生一个简单的方程式。 设定 t=0 在午夜, 并在分钟内选择单位 。Time (hours : minutes) Time (minutes) Tide (feet) 10:15 615 9 16:15 975 1 22:15 1335 9 5 5 These numbers seem to indicate a positive cosine curve. The amplitude is 4 and the vertical shift is 5. The horizontal shift is 615 and the period is 720.
::这些数字似乎表示正余弦曲线。 振幅为 4, 垂直变化为 5。 水平变化为 615, 周期为 720。
::720=2bb360Thus one equation is:
::因此,一个方程式是:
::f(x) = 4cos( 360(x-615) +5Example 5
::例5Use the equation from Example 4 to find out when the tide will be at exactly 8 ft on September .
::利用例4的方程式 来找出9月19日 潮水将到达8英尺This problem gives you the and asks you to find the . Later you will learn how to solve this algebraically, but for now use the power of the intersect button on your calculator to intersect the function with the line . Remember to find all the values between 0 and 1440 to account for the entire 24 hours.
::此问题给了您 y , 并要求您找到 x 。 以后您将学习如何解析这个代数, 但现在您将使用计算器上的交叉按钮的力量将函数与 y= 8 线交叉。 记住要找到 0 至 1440 之间的所有 x 值, 以计算整个 24 小时 。There are four times within the 24 hours when the height is exactly 8 feet. You can convert these times to hours and minutes if you prefer.
::在24小时之内,高度为8英尺,有4次。如果您愿意,可以将这些时间转换为小时和分钟。532.18 (8:52), 697.82 (11:34), 1252.18 (20:52), 1417.82 (23:38)
::T 532.18 (8:52)、697.82 (11:34)、1252.18 (20:52)、1417.82 (23:38)Summary -
For the general form of the sinusoidal function
the constant
represents the phase shift, or horizontal shift.
-
If
is positive, the function is shifted left. If
is negative, the function is shifted right.
::如果 c 是正,则函数向左移。如果 c 是负,则函数向右移。
::对于正弦函数f(x)asin(b(x+c)+d)的一般形式,恒定 c 表示相位变化或水平变化。如果c为正,则函数向左移动。如果c为负,则函数向右移动。 -
If
is positive, the function is shifted left. If
is negative, the function is shifted right.
Review
::回顾Graph each of the following functions.
::绘制下列函数的每一个图。1.
::1. f(x)=2cos(x)2-12.
::2. g(x)+3 g(x) @sin @(x)+33.
::3. h(x)=3cos(2(x))4.
::4. k(x) @ @% 2sin @ (2x)+15.
::5. j(x) (x) 2Give one possible sine equation for each of the graphs below.
::给下方图中的每个图表提供一个可能的正弦方程。6.
7.
8.
Give one possible cosine function for each of the graphs below.
::给下方每个图表提供一个可能的余弦函数 。9.
10.
11.
The temperature over a certain 24 hour period can be modeled with a sinusoidal function. At 3:00, the temperature for the period reaches a low of . At 15:00, the temperature for the period reaches a high of .
::特定24小时的温度可模拟为正弦函数。 3: 00时, 这一期间的温度低至22°F。 下午3:00时, 这一期间的温度高至40°F。12. Find an equation that predicts the temperature based on the time in minutes. Choose to be midnight.
::12. 找到一个根据分钟中的时间预测温度的方程。选择 t=0 为午夜。13. Use the equation from #12 to predict the temperature at 4:00 PM.
::13. 使用第12号方程式预测下午4点的温度。14. Use the equation from #12 to predict the temperature at 8:00 AM.
::14. 利用12号的方程来预测早上8点的温度。15. Use the equation from #12 to predict the time(s) it will be .
::15. 使用第12号方程式预测时间为32-F。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
For the general form of the sinusoidal function
the constant
represents the phase shift, or horizontal shift.