Section outline

  • F ormulas for generalized of exponential and make finding the antiderivatives straightforward. How would you determine the volume of an object whose shape is generated by rotating the function f ( x ) = 5 e 0.5 x ( 0 x 3 ) about the x -axis? Can you find the volume?
    ::直截了当地找到抗降解剂。 您将如何确定函数 f( x) = 5 = -0.5x( 0x) 生成的物体的形状的大小 ? 您能够找到它的大小吗 ?

    Integrating Exponential and Logarithmic Functions
    ::集成指数函数和对数函数

    Integrals Involving Exponential Functions
    ::涉及生态功能的综合系统

    For exponential functions, the following derivative-integral relationship holds:
    ::就指数函数而言,下列衍生物与整体关系:

    Given: d d x [ b u ] = ( ln b b u ) d u d x
    ::给定值: ddx[bu] =( lnbbu) dudx

    Then: b u d u = 1 ln b b u + C
    ::然后:budu=1lnbubu+C

    Note: For   b = e : d d x [ e u ] = e u d u d x e u d u = e u + C
    ::注:b=e:ddx[eu]=eudxeudu=eu+C

    The above result is derived from these steps:
    ::以上是这些步骤的结果:

    d d x [ b u ] = ( ln b b u ) d u d x d [ b u ] = ( ln b b u ) d u b u + C = ln b b u d u b u d u = 1 ln b b u + C 1 ln b b u + C = b u d u

    ::ddx[bu] = (lnbbu) dudx*d[bu] (lnbbu) bubu+C=lnbbudu*budu=1lnbbu+C1lnbbu+Cbudu

    So that, b u d u = 1 ln b b u + C
    ::因此,{budu=1ln{bbu+C}

    The following problems  illustrate how to apply the formula for integrating an exponential function.
    ::以下问题说明了如何应用公式整合指数函数。

    Evaluate: 5 ( x 2.5 ) d x
    ::评价:%5(x-2.5)dx

    For 5 ( x 2.5 ) d x , use u -substitution, and let u = x 2.5 . Then  d u = d x and
    ::5 (x- 2. 5) dx, 使用 u 替代, let u=x- 2. 5。 然后 du= dx and

    5 ( x 2.5 ) d x = 5 u d u = 1 ln 5 5 u + C = 1 ln 5 5 ( x 2.5 ) + C

    ::=5(x-2.5)dx=5udu=1ln5au+C=1ln55(x-2.5)+C

    Evaluate: 0 2 x 2 e x 3 d x
    ::评价: 02x2ex3dx

    For 0 2 x 2 e x 3 d x , use u -substitution, and let u = x 3 . Then d u = 3 x 2 d x  and
    ::= 02x2ex3dx,使用 u 替代, let u=x3. 然后 du= 3x2dx和

    0 2 x 2 e x 3 d x = 0 2 3 e u 1 3 d u = 1 3 e u | 0 8 = 1 3 ( e 8 1 )

    ::02x2ex3dx023eu13du=13eu08=13(e8-1)

    Integrals Involving Logarithmic Functions
    ::包含对对数函数的元件

    For logarithmic functions, the following derivative-integral relationship holds:
    ::对于对数函数,下列衍生物-整体关系存在:

    Given: d d x [ log b u ] = 1 u ln b d u d x
    ::给定值: ddx [logbu] = 1uln bdudx

    Then: 1 u ( x ) d u = ln b log b | u ( x ) | + C
    ::然后:1u(x)du=lnblogbu(x)C

    Note:  For   b = e : d d x [ ln u ] = 1 u d u d x 1 u ( x ) d u = ln | u ( x ) | + C
    ::注: 对于 b=e:ddx[ lnu] = 1udududx1u(x)du=lnu(x) C

    The above result is derived from these steps:
    ::以上是这些步骤的结果:

    d d x [ log b u ] = 1 u ln b d u d x d [ log b u ] = d u u ln b log b u + C = 1 ln b d u u ln b log b u + C = d u u

    ::ddx [logbu] = 1uln bdudxd [logbu] duuln logbu+C= 1ln bduulnbb logbu+Cduu

    So that 1 u ( x ) d u = ln b log b | u ( x ) | + C .
    ::因此,1u(x)du=lnblogbu(x)C。

    When the base is b = e , the logarithm is the natural logarithm, with the result
    ::当 b==e 时,对数为自然对数,结果为

    1 u ( x ) d u = ln | u ( x ) | + C .

    ::1u(x)du=lnu(x)C。

    Notice that the logarithm function is the of the integrand of the type d u u . This means that it is important to recognize this form, especially when dealing with a rational integrand.
    ::注意对数函数是 duu 类型的正数。 这意味着必须确认该形式, 特别是在处理理性正数时 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked about the volume of an object whose shape is generated by rotating the function  f ( x ) = 5 e 0.5 x ( 0 x 3 ) about the x -axis.
    ::早些时候,有人问及一个物体的体积,该物体的形状是通过旋转函数 f(x)=5e-0.5x(0xx)生成的。

    Use the derivative results of the last concept: d d x [ e u ] = e u d u d x e u d u = e u + C .
    ::使用最后一个概念的衍生结果:ddx[eu]=eudxeudu=eu+C。

    The volume is given by: 

    V = 0 3 π f 2 ( x ) d x = 0 3 25 π ( e 0.5 x ) 2 d x = 25 π 0 3 e x d x = 25 π e x | 0 3 V = 25 π ( 1 e 3 ) 75   in 3

    ::给定的音量为: V03f2(x)dx0325( e-0.5x) 2dx=2503e- xdx255e- x03V=25( 1- e-3) @75英寸3

    Example 2
    ::例2

    Evaluate: 1 x + 1 d x
    ::评价:% 1x+1dx

    In general, whenever there is an integral that has a rational function as an integrand, it might be possible that it can be integrated with the result being a natural logarithm.
    ::一般而言,只要有一个整体体具有作为一元的合理功能,它就有可能与自然对数相结合。

    First look at using u -substitution to see if the integrand can be transformed.
    ::首先看看用u替代来查看 是否能改变整数。

    Let u = x + 1 , then d u = d x . Then
    ::Letu=x+1, 然后du=dx。 然后

    1 x + 1 d x = d u u = ln | u | + C = ln | x + 1 | + C

    ::1x+1dxdxduu=lnuC=lnx+1C

    Remark: The integral must use the absolute value symbol because although x  may have negative values, the domain of ln ( x + 1 )  is restricted to x 0 .
    ::备注:整体体必须使用绝对值符号,因为虽然x可能有负值,但IN(x+1)的域限为x0。

    Example 3
    ::例3

    Evaluate: 4 x + 1 4 x 2 + 2 x + 1 d x
    ::评价:4x+14x2+2x+1dx

    For 4 x + 1 4 x 2 + 2 x + 1 d x , again try an see if u -substitution can work.
    ::对于 {% 4x+14x2+2x+1dx, 请再次尝试查看 u- 替代是否有效 。

    Let u = 4 x 2 + 2 x + 1 ; then d u = 8 x + 2 = 2 ( 4 x + 1 ) .
    ::Letu=4x2+2x+1; 然后du=8x+2=2(4x+1)。

    As you can see this substitution looks good because  d u = 2 ( 4 x + 1 ) is a scaled version of the numerator. Then
    ::您可以看到这个替换看起来不错, 因为 du=2( 4x+1) 是分子的缩放版本 。 然后是 du= 2, 4x+1 。

    4 x + 1 4 x 2 + 2 x + 1 d x = d u 2 u = 1 2 d u u = 1 2 ln | u | + C = 1 2 ln | 4 x 2 + 2 x + 1 | + C

    ::@ 4x+14x2+2x+1dx#du2u=12 @duu=12lnu @C=12ln4x2+2x+1{C

    Example 4
    ::例4

    The metal tip of a pointer can be described as the rotation of the function y = 0.25   e x e x e x + e x  inches from 0 x 2  inches about the x -axis. Find the surface area of the metal tip.
    ::指针的金属端可描述为函数 y=0.25 ex-e-xex+e-x英寸的旋转。 从 X 轴的 0 x 2 英寸。 查找金属端的表面区域 。

    Recall that the area, S , of the surface of revolution can be formulated as:
    ::回顾革命表面的S区可表述为:

    S = a b 2 π y d x = 0 2 2 π 0.25 e x e x e x + e x d x = π 2 0 2 e x e x e x + e x d x .

    ::Sab2ydx0220.25ex-e-xex+e-xdx202ex-ex-xex+e-e-xdxxx。

    If you stare at the integrand long enough, you eventually see that the numerator in the integrand is the derivative of the denominator, so that u -substitution will be helpful.
    ::如果你盯着一兆字节看足够长的时间, 你最终会看到一兆字节中的分子是分母的衍生物, 这样u替代会很有帮助。

    Let u = e x + e x ; then d u = e x e x , and the integral becomes
    ::Let u=ex+e-x; 然后du=ex-e-x, 整体成为

    S = π 2 0 2 e x e x e x + e x d x = π 2 2 ( e 2 + e 2 ) d u u = π 2 ln | u | 2 ( e 2 + e 2 ) = π 2 ( ln ( e 2 + e 2 ) ln 2 ) = π 2 ( ln ( e 2 + e 2 2 ) ) 2.1

    ::S202ex-e-xex+e-xdx%22(e2+e-2)、duu2ln22(e2+e-2)、2(e2+e-2)、2(e2+e-2-)-ln2)、2(l_(e2+e-22))2.1

    The surface area of the metal tip is approximately 2   in 2 .
    ::金属尖的表面面积约为2英寸2。

    Example 5
    ::例5

    Evaluate 0 1 5 x + 6 x 7 x d x .
    ::=============================================================================================================================================== ===============================================================================================================================================================================================

    To solve, rewrite each exponential in the integrand in terms of the common base e , before evaluating:
    ::要解答,在评估之前,以共同基数e 重写原数中的每个指数 :

    0 1 5 x + 6 x 7 x d x = 0 1 ( e ln 5 ) x + ( e ln 6 ) x ( e ln 7 ) x d x = 0 1 e x ln 5 + e x ln 6 e x ln 7 d x = 0 1 [ e x ln ( 5 7 ) + e x ln ( 6 7 ) ] d x = [ e x ln ( 5 7 ) ln ( 5 7 ) + e x ln ( 6 7 ) ln ( 6 7 ) ] 0 1 = 5 7 1 ln ( 5 7 ) + 6 7 1 ln ( 6 7 ) = 2 7 ln ( 5 7 ) + 1 7 ln ( 6 7 )

    ::015x+6x7xxx01(eln5)x+(eln6)xx(eln7)xxxxx1Exln=5+exln7dx01[exln(57)+exln(67)dx=[exln(57)_(57)_(57)+exln(67)_(67)_(67)_(57)_(67)_(67)_(67)_(67)_(67)_(7)xxxxx+6x7x7xxxxx1xxxxxxxx_01#01[57(57)+exln}(67)]dx=[xln_(57)_(57)_(57)+exln_(57)+exln_(67)}01=571-1__00_(57_(57)_(67)_1}(67)

    Review
    ::回顾

    Evaluate the following integrals.
    ::评估以下综合体。

    1. 4 e x d x
      ::4exdx
    2. 2 e 2 x + 3 d x
      ::2e2x+3dx
    3. 5 3 x + 2 d x
      ::53x+2dx
    4. ( 7 e x + 2 ) d x
      :sad7e-x+2)dx
    5. e x ( 1 + 3 e x ) 5 d x
      ::ex( 1+3ex) 5dx
    6. 5 x ( 1 5 x ) ( 1 + 5 x ) 6 d x
      ::5x(1-5x)(1+5x)6dx
    7. 1 e x d x
      ::1exdx
    8. e x d x
      ::exdx
    9. 4 x 3 4 x 2 6 x + 7 d x
      ::4x-34x2 -6x+7dx
    10. e x + e x e x e x d x
      ::* ex- e- xex- e- xdx
    11. 0 e d x x + e
      ::0edxx+e
    12. ln 3 ln 3 e x e x + 4 d x
      ::3ln3exex+4dx
    13. d x x ln x
      ::* dxxln *xxx * *xxxx *xxx *xxx *xxxx *xxxx *xxx *xxxx *xxxxx
    14. 1 e π 2 4 cos ( ln x ) x d x
      ::===================================================================================================================================
    15. ln x + 5 x ( ln 2 x + 4 ln x + 4 ) d x
      ::=================================================================================================================================================================================================

    Hint: Break up the integrand into two parts and use u -substitution.
    ::提示:将原群分成两部分,使用替代手段。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。