指数函数和对数函数的元件
章节大纲
-
F ormulas for generalized of exponential and make finding the antiderivatives straightforward. How would you determine the volume of an object whose shape is generated by rotating the function about the -axis? Can you find the volume?
::直截了当地找到抗降解剂。 您将如何确定函数 f( x) = 5 = -0.5x( 0x) 生成的物体的形状的大小 ? 您能够找到它的大小吗 ?Integrating Exponential and Logarithmic Functions
::集成指数函数和对数函数Integrals Involving Exponential Functions
::涉及生态功能的综合系统For exponential functions, the following derivative-integral relationship holds:
::就指数函数而言,下列衍生物与整体关系:Given:
::给定值: ddx[bu] =( lnbbu) dudxThen:
::然后:budu=1lnbubu+CNote:
::注:b=e:ddx[eu]=eudxeudu=eu+CThe above result is derived from these steps:
::以上是这些步骤的结果:
::ddx[bu] = (lnbbu) dudx*d[bu] (lnbbu) bubu+C=lnbbudu*budu=1lnbbu+C1lnbbu+CbuduSo that,
::因此,{budu=1ln{bbu+C}The following problems illustrate how to apply the formula for integrating an exponential function.
::以下问题说明了如何应用公式整合指数函数。Evaluate:
::评价:%5(x-2.5)dxFor , use -substitution, and let . Then and
::5 (x- 2. 5) dx, 使用 u 替代, let u=x- 2. 5。 然后 du= dx and
::=5(x-2.5)dx=5udu=1ln5au+C=1ln55(x-2.5)+CEvaluate:
::评价: 02x2ex3dxFor , use -substitution, and let . Then and
::= 02x2ex3dx,使用 u 替代, let u=x3. 然后 du= 3x2dx和
::02x2ex3dx023eu13du=13eu08=13(e8-1)Integrals Involving Logarithmic Functions
::包含对对数函数的元件For logarithmic functions, the following derivative-integral relationship holds:
::对于对数函数,下列衍生物-整体关系存在:Given:
::给定值: ddx [logbu] = 1uln bdudxThen:
::然后:1u(x)du=lnblogbu(x)CNote:
::注: 对于 b=e:ddx[ lnu] = 1udududx1u(x)du=lnu(x) CThe above result is derived from these steps:
::以上是这些步骤的结果:
::ddx [logbu] = 1uln bdudxd [logbu] duuln logbu+C= 1ln bduulnbb logbu+CduuSo that .
::因此,1u(x)du=lnblogbu(x)C。When the base is , the logarithm is the natural logarithm, with the result
::当 b==e 时,对数为自然对数,结果为
::1u(x)du=lnu(x)C。Notice that the logarithm function is the of the integrand of the type . This means that it is important to recognize this form, especially when dealing with a rational integrand.
::注意对数函数是 duu 类型的正数。 这意味着必须确认该形式, 特别是在处理理性正数时 。Examples
::实例Example 1
::例1Earlier, you were asked about the volume of an object whose shape is generated by rotating the function about the -axis.
::早些时候,有人问及一个物体的体积,该物体的形状是通过旋转函数 f(x)=5e-0.5x(0xx)生成的。Use the derivative results of the last concept: .
::使用最后一个概念的衍生结果:ddx[eu]=eudxeudu=eu+C。The volume is given by:
::给定的音量为: V03f2(x)dx0325( e-0.5x) 2dx=2503e- xdx255e- x03V=25( 1- e-3) @75英寸3Example 2
::例2Evaluate:
::评价:% 1x+1dxIn general, whenever there is an integral that has a rational function as an integrand, it might be possible that it can be integrated with the result being a natural logarithm.
::一般而言,只要有一个整体体具有作为一元的合理功能,它就有可能与自然对数相结合。First look at using -substitution to see if the integrand can be transformed.
::首先看看用u替代来查看 是否能改变整数。Let , then . Then
::Letu=x+1, 然后du=dx。 然后
::1x+1dxdxduu=lnuC=lnx+1CRemark: The integral must use the absolute value symbol because although may have negative values, the domain of is restricted to .
::备注:整体体必须使用绝对值符号,因为虽然x可能有负值,但IN(x+1)的域限为x0。Example 3
::例3Evaluate:
::评价:4x+14x2+2x+1dxFor , again try an see if -substitution can work.
::对于 {% 4x+14x2+2x+1dx, 请再次尝试查看 u- 替代是否有效 。Let ; then .
::Letu=4x2+2x+1; 然后du=8x+2=2(4x+1)。As you can see this substitution looks good because is a scaled version of the numerator. Then
::您可以看到这个替换看起来不错, 因为 du=2( 4x+1) 是分子的缩放版本 。 然后是 du= 2, 4x+1 。
::@ 4x+14x2+2x+1dx#du2u=12 @duu=12lnu @C=12ln4x2+2x+1{CExample 4
::例4The metal tip of a pointer can be described as the rotation of the function inches from inches about the -axis. Find the surface area of the metal tip.
::指针的金属端可描述为函数 y=0.25 ex-e-xex+e-x英寸的旋转。 从 X 轴的 0 x 2 英寸。 查找金属端的表面区域 。Recall that the area, , of the surface of revolution can be formulated as:
::回顾革命表面的S区可表述为:
::Sab2ydx0220.25ex-e-xex+e-xdx202ex-ex-xex+e-e-xdxxx。If you stare at the integrand long enough, you eventually see that the numerator in the integrand is the derivative of the denominator, so that -substitution will be helpful.
::如果你盯着一兆字节看足够长的时间, 你最终会看到一兆字节中的分子是分母的衍生物, 这样u替代会很有帮助。Let ; then , and the integral becomes
::Let u=ex+e-x; 然后du=ex-e-x, 整体成为
::S202ex-e-xex+e-xdx%22(e2+e-2)、duu2ln22(e2+e-2)、2(e2+e-2)、2(e2+e-2-)-ln2)、2(l_(e2+e-22))2.1The surface area of the metal tip is approximately .
::金属尖的表面面积约为2英寸2。Example 5
::例5Evaluate .
::=============================================================================================================================================== ===============================================================================================================================================================================================To solve, rewrite each exponential in the integrand in terms of the common base , before evaluating:
::要解答,在评估之前,以共同基数e 重写原数中的每个指数 :
::015x+6x7xxx01(eln5)x+(eln6)xx(eln7)xxxxx1Exln=5+exln7dx01[exln(57)+exln(67)dx=[exln(57)_(57)_(57)+exln(67)_(67)_(67)_(57)_(67)_(67)_(67)_(67)_(67)_(7)xxxxx+6x7x7xxxxx1xxxxxxxx_01#01[57(57)+exln}(67)]dx=[xln_(57)_(57)_(57)+exln_(57)+exln_(67)}01=571-1__00_(57_(57)_(67)_1}(67)Review
::回顾Evaluate the following integrals.
::评估以下综合体。-
::4exdx -
::2e2x+3dx -
::53x+2dx -
:7e-x+2)dx
-
::ex( 1+3ex) 5dx -
::5x(1-5x)(1+5x)6dx -
::1exdx -
::exdx -
::4x-34x2 -6x+7dx -
::* ex- e- xex- e- xdx -
::0edxx+e -
::3ln3exex+4dx -
::* dxxln *xxx * *xxxx *xxx *xxx *xxxx *xxxx *xxx *xxxx *xxxxx -
::=================================================================================================================================== -
::=================================================================================================================================================================================================
Hint: Break up the integrand into two parts and use -substitution.
::提示:将原群分成两部分,使用替代手段。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -