分拆的一等、一等、一等、一等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等、二等
Section outline
-
In the concept question that introduced ordinary differential equations, you were asked to write a general differential equation from a word statement that described the well known Malthusian model of population growth in an ideal environment. The simple, linear differential equation was of the form %3Dky"> d y d t = F ( y ) = k y . This is a separable ODE, with general solution y = C e k t .
::在引入普通差异方程式的概念问题中,您被要求用一个词句来写出一个一般差异方程式,该词句描述了在理想环境中众所周知的马尔图西亚人口增长模式。简单、线性差异方程式的形式是dydt=F=ky。这是一个可分离的 ODE, 包含通用解决方案 y=Cekt 。
Another well known problem that can be modeled by a separable differential equation involves how long it will take to empty an initially full water tank (in the form of a right-circular cylinder standing on end) that is leaking water through a small circular hole in its bottom. The Italian scientist Torricelli determined that water in an open tank will flow out through a small hole in the bottom with the velocity, v , it would acquire in falling freely from the water level to the hole, i.e. v = √ 2 g h ( t ) (ideal) where h ( t ) is the height of the water in the tank. If the amount of water leaving the tank over some time must be the cause of the water level decrease, can you determine the differential equation which models the change with time in water level height for an H meter high tank with a radius of r meters, and hole of radius s meters? How long does it take the tank to empty?
::意大利科学家托里切利(Torricelli)确定,开水箱的水会随着速度从水位自由掉落到洞口,即从水位到水位高度(即v2gh(t)(理想),水箱的高度为h(t))的高度。 如果离开水箱的水量在一段时间内必须是水位下降的原因,你能否确定以水位高度时间来计算水位高度变化的差别方程式,以水位高度为半径的H米高水槽和半径计的洞?水箱需要多久才能空?Solving ODE's by Separation of Variables
::通过变量分离解决 ODEWith some first order ODEs, the dependence of x and y is separable, and the equation can be written in one of the following forms:
::有了某些第一顺序的代码,x和y的依附性是可以分离的,方程式可以以下列一种形式写成:-
">
d
y
d
x
=
F
(
x
,
y
)
=
f
(
x
)
g
(
y
)
, or
::uddx=F(x,y)=f(x)g,或
-
%7D">
d
y
d
x
=
F
(
x
,
y
)
=
f
(
x
)
g
(
y
)
, or
::uddx=F(x,y)=f(x)g,或
-
%7D%7Bf(x)%7D">
d
y
d
x
=
F
(
x
,
y
)
=
g
(
y
)
f
(
x
)
::uddx=F(x,y)=gf(x)
The above forms are called a separable first order differential equation, and solutions can be formulated and obtained by integrating both sides of the equation:
::上述形式称为可分离的第一阶差异方程式,可通过将等式的两侧结合起来来拟订和获得解决办法:-
%20%5CRightarrow%20%5Cint%20%5Cfrac%7Bdy%7D%7Bg
%7D%3D%5Cint%20f(x)dx"> d y d x = F ( x , y ) = f ( x ) g ( y ) ⇒ ∫ d y g ( y ) = ∫ f ( x ) d x , or
::dydx=F(x,y)=f(x)g\\\dyg
\\y)\\\f(x)dx,或
-
%7D%20%5CRightarrow%20%5Cint%20g
dy%3D%5Cint%20f(x)dx"> d y d x = F ( x , y ) = f ( x ) g ( y ) ⇒ ∫ g ( y ) d y = ∫ f ( x ) d x , or
::dydx=F(x,y)=f(x)g\g
\g
\g
dy*f(x)dx,或
-
%7D%7Bf(x)%7D%20%5CRightarrow%20%5Cint%20%5Cfrac%7Bdy%7D%7Bg
%7D%3D%5Cint%20%5Cfrac%7Bdx%7D%7Bf(x)%7D"> d y d x = F ( x , y ) = g ( y ) f ( x ) ⇒ ∫ d y g ( y ) = ∫ d x f ( x )
::dydx=F(x,y)=gf(x)\\\dyg
\\dxf(x)
Let's solve the differential equation y ′ = x y with the initial condition y ( 0 ) = 1 .
::让我们用 y(0)=1 的初始条件来解析 yxy 的差别方程 。For this problem, f ( x ) = x and %3Dy"> g ( y ) = y .
::对于这个问题, f(x) =x 和 g=y。
Separating x and y yields the differential form d y y = x d x , with the restriction y ≠ 0 .
::分离 x 和 y 产生差异形式 dyy=xdx, 限制为 y = 0 。Integrating both sides yields: ln | y | = 1 2 x 2 + C .
::将两边结合产生:Iny12x2+C。This means that y = e 1 2 x 2 + C = K e 1 2 x 2 .
::这意味着 Y=e12x2+C=Ke12x2。If y ( 0 ) = 1 , then 1 = K , and the particular solution is y = e 1 2 x 2 .
::如果 Y( 0) = 1, 那么 1 = K, 且特定溶液是 y= e12x2 。Note that y ≥ 1 , which is consistent with the restriction y ≠ 0 .
::注意,y1, 与限制y#0一致。Let's try another one. Solve the differential equation d y d x = x + 3 y + 4 with the initial condition y ( 0 ) = 0 .
::让我们再试一个。 以 y( 0) = 0 的初始条件解决 didx=x+3y+4 的差别方程式 。In this problem f ( x ) = x + 3 and %3D%5Cfrac%7B1%7D%7By%2B4%7D"> g ( y ) = 1 y + 4 . Note that we must make sure that y ≠ − 4 .
::在此问题上 f( x) =x+3 和 g= 1y+4。 请注意, 我们必须确保 y @ 4 。
Separating f ( x ) and "> g ( y ) yields the differential form ( y + 4 ) d y = ( x + 3 ) d x .
::分离 f(x) 和 g产生差异表(y+4)dy=(x+3)dx。
Integrating both sides yields:
::将两边结合产生:∫ ( y + 4 ) d y = ∫ ( x + 3 ) d x y 2 2 + 4 y = x 2 2 + 3 x + C y 2 + 8 y = x 2 + 6 x + C
:y+4) (x+3) dxy22+4y=x22+3x+Cy2+8y=x2+6x+C
To make a more compact form to solve for y , complete the square on both sides of the above equation:
::为使y的解决方式更为紧凑,完成上述方程两侧的方块:y 2 + 8 y + 16 − 16 = x 2 + 6 x + 9 − 9 + C ( y + 4 ) 2 − 16 = ( x + 3 ) 2 − 9 + C ( y + 4 ) 2 = ( x + 3 ) 2 + 7 + C y + 4 = ± √ ( x + 3 ) 2 + 7 + C y = ± √ ( x + 3 ) 2 + 7 + C − 4
::Y2+8y+16- 16=x2+6x+9- 9+C(y+4)2- 16=(x+3)2- 9+C(y+4)2=(x+3)2+7+Cy+4*(x+3)2+7+Cy+4*(x+3)2+7+Cy+4*(x+3)2+7+C__(x+3)2+7+C-4Using the initial condition y ( 0 ) = 0 , we see that y = 0 = √ ( 3 ) 2 + 7 + C − 4 , so that C = 0 .
::使用初始条件y(0)=0,我们看到y=0(3)2+7+C-4,所以C=0。Therefore, y = √ ( x + 3 ) 2 + 7 − 4 . Note that y ≥ ( √ 7 − 4 ) ≈ − 1.35 , so the restriction y ≠ − 4 is met.
::因此,y(x+3)2+7-4.请注意y((7)-4)1.35,因此满足了y4的限制。Exponential and Logistics Growth
::指数增长和物流增长Separable first-order differential equations are evident in two models of population growth.
::在两种人口增长模式中,明显可见可分离的第一阶差异方程式。In the model, the population, P , grows with time, without restrictions, at a rate proportional to the current population, i.e.
::在模式中,人口P随时间增长,不受限制,与目前人口的比例成比例,即:d P d t = k P , where k > 0 is the growth rate.
::dPdt=kP, K>0 是增长率 。This separable differential equation has the general solution form P ( t ) = P 0 e k t .
::这一可分离的差别方程式具有P(t)=P0ekt的一般解决办法。In the Logistics Growth model, the rate of growth is adjusted by another factor ( 1 − P K ) as follows:
::在物流增长模式中,增长率按另一个因素(1-PK)调整如下:d P d t = k P ( 1 − P K )
::dPdt=kP( 1 - PK)where K is the carrier capacity. The factor ( 1 − P K ) is close to 1 when P K ≪ 1 , but close to 0 when P K ≈ 1 .
::K是承载能力。因数(1-PK)在PK%1时接近1,但在PK%1时接近0。This separable differential equation has the general solution form P ( t ) = P 0 1 + A e k t , with A = K − P 0 P 0 .
::这个可分离的差分方程式有通用解决方案表P(t)=P01+Aekt,A=K-P0P0。Say the population on an island is given by the equation d P d t = 0.05 P ( 1 − P 0 5000 ) , with t in years, and P 0 = 1000 . We want to find the population sizes P ( 20 ) and P ( 30 ) as well as the time at which the population will first exceed 4000.
::说一个岛屿上的人口是按等式dPdt= 0.05P(1-P05000)和P0= 1 000(年)提供的,我们想找到P(20)和P(30)的人口规模,以及人口首次超过4000的时间。The solution is given by P = P 0 1 − A e 0.05 t where A = 5000 − 1000 1000 = 4 .
::溶液由P=P01-Ae0.05t给出,A=5000-1000000=4。Therefore,
::因此,P ( 20 ) = 5000 1 + 4 e − 0.05 ( 20 ) = 5000 1 + 4 e − 1 = 2023 , and P ( 30 ) = 5000 1 + 4 e − 0.05 ( 30 ) = 5000 1 + 4 e − 1.5 = 3785
::P(20)=500001+4e-0.05(20)=500001+4e-1=2023;P(30)=50001+4e-0.05(30)=500001+4e-0.05(30)=500001+4e-1.5e-1.5=3785Solve for time,
::暂时解决P ( t ) = 4000 = 5000 1 + 4 e − 0.05 ( t ) gives e − 0.05 t = 5000 4000 − 1 4 = 0.0625.
::P(t) =4000=50001+4e-0.05(t) 给予e- 0.05t = 50004000-14=0.0625。This means t = 56 . The population first exceeds 4000 in the 56 t h year.
::这意味着 t=56。56年人口首次超过4000人。Examples
::实例Example 1
::例1Earlier, you were asked to determine the differential equation which models the change with time in water level height for an H meter high tank with a radius of r meters, and hole of radius s meters for a tank that is emptying. How long does it take the tank to empty?
::早些时候,您被要求确定不同的方程, 以水位高度的时间和半径为r米的H米高储油罐的变化模式, 以半径为r米的罐体的半径米洞和空置的罐体的半径米洞为模式。 罐体需要多久才能空出?The amount water leaving the tank over a time d t is π s 2 v d t = π s 2 √ 2 g h ( t ) d t .
::罐体在时间 dt 中离开的水量为 2vdt s22gh(t)dt。The decrease in the water volume in the tank from the above is − π r 2 d h .
::从上述情况来看,罐体水量的下降幅度为°r2dh。Equating the above two gives − π r 2 d h = π s 2 √ 2 g h ( t ) d t or d h d t = − ( s r ) 2 √ 2 g h ( t ) = − [ ( s r ) 2 √ 2 g ] √ h ( t ) = − k √ h ( t ) . The change in water level is proportional to its square root.
::将以上两点归为“r2dhs222(t)dt或dhdt(sr)22⁄2gh(t){[sr)22⁄2g}}h}}{kh}。水位的变化与其平方根成正比。To solve this 1 st -order, non linear ODE, rearrange and integrate: ∫ d h √ h ( t ) = − ∫ k d t , or 2 √ h ( t ) = − k t + C ′ ⇒ h ( t ) = ( C − 1 2 k t ) 2 as the general solution.
::为了解决这个问题,非线性 ODE, 重新排列和整合: dhh(t)kdt, 或2h(t)kt+Ch(t)=(C- 12kt)2 作为一般解决办法。The particular solution must satisfy h ( 0 ) = H = ( C − 1 2 k ⋅ 0 ) 2 = C 2 , so that C = √ H . The particular solution is h ( t ) = ( √ H − 1 2 [ ( s r ) 2 √ 2 g ] t ) 2
::特定解决方案必须满足 h(0) = H= (C) = ((12k0) 2= C2, 这样C = H。 特定解决方案是 h(t) = (H) = (H) = ((sr) = 22g) t 2。The tank will be completely empty when h ( t ) = 0 , which occurs at the time given by t = √ 2 H g ⋅ ( r s ) 2 .
::当h(t)=0时,罐体将是完全空的,而h(t)=0是在t2Hg(rs)2给定的时间发生的。Example 2
::例2Solve the differential equation y ′ = − y sin x .
::解决yysinx的差别方程式In this example f ( x ) = sin x and %3D-y"> g ( y ) = − y .
::在此示例 f( x) =sinx 和 gy 。
Separating f ( x ) and "> g ( y ) yields the differential form d y − y = sin x d x , which can then be integrated as follows:
::分离 f(x) 和 g产生差分形式 dy-y=sinxdx, 然后可以合并如下:
− ∫ d y y = ∫ sin x d x − ln | y | = cos x + C y = ± e − cos x − C y = ± D e − cos x … D = e C > 0
::...D=eC>0Example 3
::例3Solve the differential equation 2 x y ′ = 1 − y 2 .
::解开2x1 -y2的差分方程In this example f ( x ) = 1 2 x and %3D1-y%5E2"> g ( y ) = 1 − y 2 .
::在此示例中 f( x) = 12x 和 g= 1-y2 。
Separating f ( x ) and "> g ( y ) yields the differential form 2 1 − y 2 d y = d x x , which can then be integrated to get ∫ 2 1 − y 2 d y = ∫ d x x .
::分离 f(x) 和 g产生 21 - y2dy= dxx 的差分表, 然后可以整合, 以获得\\\ 21 - y2dydxx 。
The integrand on the left can be expanded as a partial fraction to become ∫ ( 1 1 − y + 1 1 + y ) d y = ∫ d x x .
::左侧的整数可以作为部分部分部分扩大,成为(11-y+11+y)dxxx。Integrating both sides, we have
::将双方融为一体,我们− ln | 1 − y | + ln | 1 + y | = ln | x | + C ln | 1 + y 1 − y | = ln ( e C | x | ) | 1 + y 1 − y | = D | x | … D = e C > 0 1 + y 1 − y = ± D x y = ± D x − 1 D x + 1 … D > 0
::-==-=-=-=-=-=- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =- =-Review
::回顾For #1-12, solve the differential equation using any stated conditions:
::对于#1-12, 使用任何规定的条件解析差分方程 :-
y
′
=
1
e
y
with the condition
y
(
e
)
=
0
.
::y(e)=0。 y(e)=0。 -
y
′
=
x
(
y
2
+
1
)
.
::yx(y2+1) yx(y2+1) 。 -
y
′
=
x
√
1
−
y
2
.
::~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ -
d
P
d
t
=
k
P
.
::dPdt=kP. 电磁脉冲 -
d
P
d
t
=
k
P
with
P
(
1
)
=
10
,
000
and
P
(
2
)
=
20
,
000
.
::dPdt=kP,P(1)=10 000,P(2)=20 000。 -
y
′
=
y
2
.
::y"y"2。 y"y"y"y"y2"y"y"y"y"y2. -
y
′
=
2
y
.
::yy。 yyy。 y2y。 y2y。 y2y,y2y,y2y。 y2y,y2y。 y2y。 -
y
′
=
1
y
.
::yy。 y yy。 y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y y. y y y y y y y y y y y y y y y y y y y y y y y y. y y y y y y y y y y. y y y y y y y y yyy。 y y y yy y y y。 y y y y y y y y y y y y。。 y y y y y y y y。。。 y y y y y y y y y。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 -
y
′
=
e
y
.
::y'y。 y"yy。 y"yy。 y"y"yy。 -
y
′
=
y
with the initial condition
y
(
0
)
=
4
.
::yy(0)=4的初始状态y(0)=4。 -
y
′
=
y
with the initial condition
y
(
2
)
=
e
.
::y y y 与初始状态y(2)=e。 -
Find another initial condition for the initial value problem
y
′
=
y
,
y
(
0
)
=
2
that would yield the same particular solution.
::为初始值问题yy, y(0)=2寻找另一个初始条件, 以产生相同的特定解决方案 。 -
Solve the differential equation:
d
P
d
t
=
k
P
(
1
−
P
K
)
.
::解决差分方程: dPdt=kP(1-PK)。 -
(Logistic Growth) The population of a city is given by the equation
::一个城市的人口由这个方程式给出
d P d t = 0.06 P ( 1 − P 100000 ) with P 0 = 25000 .
::dPdt=0.06P(1-P1000),P0=2500。Find the population size P ( 10 ) . At what time will the population first exceed 90,000?
::寻找P(10)人口规模,人口在什么时候将首次超过90,000人?Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -
">
d
y
d
x
=
F
(
x
,
y
)
=
f
(
x
)
g
(
y
)
, or