Section outline

  • lesson content

    A farmer, Kelly, has two lovely plots of rectangular land to grow some vegetables. Her friend will help her plant in the spring. One plot of land is  8 a by  6 a and the other plot of land is  3 a by 4 a . The two plots of land are going to be combined so they can grow more vegetables. How can Kelly find the total area for both plots of farmable land?
    ::农民凯利拥有两块可爱的长方形土地来种植蔬菜。她的朋友会在春天帮助她种植。一块土地是8a乘6a,另一块土地是3a乘4a。两块土地将合并,这样他们就能种植更多的蔬菜。凯利如何为这两块可耕地找到总面积?

    In this concept, you will learn to simplify variable expressions involving multiple operations .
    ::在此概念中,您将学会简化涉及多个操作的变量表达式。

    Simplifying Variable Expressions Involving Multiple Operations
    ::简化涉及多个操作的变量表达式

    Sometimes, you may need to simplify algebraic expressions that involve more than one operation . Use what you know about simplifying sums, differences, products, or quotients of algebraic expressions to help you do this.
    ::有时,您可能需要简化涉及多个操作的代数表达式。使用您所知道的简化数值、差异、产品或代数表达式的商数来帮助您做到这一点。

    When evaluating expressions, it is important to keep in mind the , which is
    ::在评价表达式时,必须铭记

    • First, do the computation inside " data-term="Parentheses" role="term" tabindex="0"> parentheses .
      ::首先,在括号内进行计算。
    • Second, evaluate any exponents.
      ::第二,评估任何前台。
    • Third, multiply and divide in order from left to right.
      ::第三,从左到右的成倍和分化。
    • Finally, add and subtract in order from left to right.
      ::最后,按顺序从左向右增减。

    Now let’s look at an example.
    ::现在让我们来举一个例子。

    Simplify this expression  7 n + 8 n 3
    ::简化此表达式 7n+8n}3

    First, simplify according to the order of operations. According to the order of operations, you should multiply first. 
    ::首先,根据操作顺序简化。根据操作顺序,您应该先乘。

    7 n + 8 n 3 = 7 n + 24 n .

    ::7n+8n3=7n+24n.

    Next, add like terms .
    ::之后加上类似术语。

    7 n + 24 n = 31 n

    ::7n+24n=31n

    The answer is 31 n .
    ::答案是31n

    Here is another example.
    ::下面是另一个例子。

    Simplify the expression 10 p 7 p + 8 p ÷ 2 p .
    ::简化表达式 10p-7p+8p2p 。

    First, follow the order of operations and rewrite the division as a fraction .
    ::首先,按照操作顺序,将分数重写为分数。

    8 p 2 p

    ::8p2p8p2p

    Next, simplify the fraction, assuming  p is not equal to zero.
    ::其次,简化分数,假设p不等于零。

    8 p 2 p = 8 2 × p p = 4 × 1 = 4

    ::8p2=82xpp=4x1=4

    Next, rewrite the equation .
    ::下一位,重写方程式

    10 p 7 p + 8 p 2 p = 10 p 7 p + 4

    ::10p-7p+8p2p=10p-7p+4

    Simplify, by combing like terms.
    ::简化,像用词一样梳理。

    10 p 7 p + 4 = 3 p + 4

    ::10p-7p+4=3p+4

    The answer is 3 p + 4 .
    ::答案是3p+4。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Kelly and her two plots of land.
    ::早些时候,你得到一个问题 凯莉和她两块土地。

    One is  8 a by  6 a and the other is  3 a by 4 a .
    ::一个是8a乘6a,另一个是3a乘4a。

    The plots of land need to be combined to find the total area of farmable land.
    ::土地需要合并,以找到可耕地的总面积。

    First, consider the equation for the area of a rectangle.
    ::首先,考虑矩形区域的方程。

    Area of a rectangle = length × width

    ::矩形区域=长xwidth

    Next, calculate the area of the first rectangular plot of land.
    ::接下来,计算第一块长方形土地的面积。

    8 a × 6 a = 48 a 2

    ::8ax6a=48a2

    Then, calculate the area of the second rectangular plot of land.
    ::然后计算第二个长方形土地的面积。

    3 a × 4 a = 12 a 2

    ::3ax4a=12a2

    Next, write and expression for the total area of the two plots of land.
    ::接下来是两块土地总面积的写作和表达。

    48 a 2 + 12 a 2

    ::48a2+12a2

    Finally combine like terms.
    ::最后,将类似术语结合起来。

    48 a 2 + 12 a 2 = 60 a 2

    ::48a2+12a2=60a2

    The answer is 60 a 2 .
    ::答案是60a2

    Example 2
    ::例2

    Samera has twice as many pets as Amit has. Kyra has 4 times as many pets as Amit has. Let  a represent the number of pets Amit has.
    ::Samera的宠物数量是Amit的两倍。 Kyra的宠物数量是Amit的4倍。请代表Amit的宠物数量。

    1. Write an expression to represent the number of pets Samera has.
      ::写一个表达式来代表Samera的宠物数量。
    2. Write an expression to represent the number of pets Kyra has.
      ::写一个表达式来代表 Kyra 的宠物数量 。
    3. Write an expression to represent the number of pets Samera and Kyra have all together.
      ::写一个表达式来代表Samera和Kyra的宠物数量。

    First, answer part a .
    ::第一,回答第一部分。

    Samera has twice as many pets as Amit. Since Amit has a pets, Samera has  2 a pets.
    ::Samera养的宠物是Amit的两倍。自从Amit养了宠物,Samera养了2只宠物。

    Next, answer part b .
    ::接下去回答B部分。

    Kyra has 4 times as many pets as Amit has. Since Amit has a pets, Kyra has  4 a pets.
    ::Kyra养的宠物是Amit的4倍。由于Amit养的宠物,Kyra养的宠物是4A。

    Finally, answer part c .
    ::最后,回答C部分。

    To find the number of pets Samera and Kyra have “all together,” write an addition expression.
    ::为了找到Samera和Kyra的宠物数量,

    2 a + 4 a

    ::2a+4a

    Finally, combine like terms.
    ::最后, 合并起来像术语一样。

    2 a + 4 a = 6 a

    ::2a+4a=6a

    The answer is 6 a .
    ::答案是6a。

    Simplify each expression.
    ::简化每个表达式。

    Example 3
    ::例3

    4 a + 9 a 7

    ::4a+9a-7

    Combine the like terms  4 a and 9 a .
    ::结合4a和9a的术语

    The answer is 13 a 7 .
    ::答案是13a-7。

    Example 4
    ::例4

    14 x 2 + 9 x

    ::14x2+9x 14x2+9x

    First, follow the order of operations and do the division first.
    ::首先,按照行动顺序,先做分工。

    14 x 2 + 9 x = 7 x + 9 x

    ::14x2+9x=7x+9x

    Next, combine like terms.
    ::接下来,把术语合并起来。

    7 x + 9 x = 16 x

    ::7x+9x=16x

    The answer is 16 x .
    ::答案是16x。

    Example 5
    ::例5

    6 b 2 b + 5 b 8

    ::6b-2b+5b-8

    Follow the order of operations and perform the addition and subtraction from left to right.
    ::遵循操作顺序,执行从左向右增减。

    6 b 2 b + 5 b 8 = 9 b 8

    ::6b-2b+5b-8=9b-8

    The answer is 9 b 8 .
    ::答案是9b-8。

    Review
    ::回顾

    Simplify each expression involving multiple operations.
    ::简化涉及多个操作的每个表达式。

    1. 6 a + 4 a 2 b
      ::6a+4a-2b
    2. 16 b 4 b 2  
      ::16b-4b2
    3. 22 a ÷ 2 + 14 a  
      ::22a2+14a
    4. 19 x 5 x 2  
      ::19 - 5x% 2
    5. 16 y 12 y ÷ 2  
      ::16-12y2
    6. 16 a 4 a 12 b  
      ::16a - 4a - 12b
    7. 26 a + 14 a + 12 b + 2 b
      ::26a+14a+12b+2b
    8. 36 a + 4 a 2 b + 5 b  
      ::36a+4a-2b+5b
    9. 18 a + 4 a + 12 y  
      ::18a+4a+12y
    10. 46 a + 34 a 12 b + 14 b
      ::46a+34a-12b+14b
    11. 16 y + 4 y 2 x  
      ::16y+4y-2x 16y+4y-2x
    12. 6 x + 4 x + 2 x + 4 y 19 z  
      ::6x+4x+2x+4y-19z
    13. 26 y 12 y ÷ 2  
      ::26-12y2
    14. 36 y 12 y ÷ 12  
      ::36-12y12
    15. 46 y + 12 y ÷ 2
      ::46+12y @%2

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源