章节大纲

  • lesson content

    Dana is collecting information about caterpillars for science class. She’s comparing the lengths and widths of several caterpillars. Dana puts the data she has so far into a table. Dana is convinced there is a pattern . Can organize this information as a set of ordered pairs, graph it on a coordinate plane and write an equation that could model this?
    ::Dana正在收集科学类毛虫的信息。 她正在比较几只毛虫的长度和宽度。 Dana将她迄今掌握的数据放在一张表格中。 Dana相信有一个模式。 Dana可以将这些信息组织成一组定购配对,在坐标平面上绘制图表,并写出一个可以模拟这个模式的方程式?

    x  (width in cm) y  (length in cm) 2 2 3 4 4 6 5 8 6 10
     
    In this concept, you will learn to graph on the coordinate plane.
    ::在此概念中,您将学会在坐标平面上绘制图表。

    Graphing Linear Functions
    ::直线函数

    A linear function is a specific type of function . You may notice that the word “line” is part of the word “linear”. That fact can help you remember that when a linear function is graphed on a coordinate plane, its graph will be a straight line.
    ::线性函数是一种特定类型的函数。您可能会注意到,“线性”一词是“线性”一词的一部分。这一事实可以帮助您记住,当线性函数在坐标平面上绘制图时,其图将是一个直线线。

    You can represent a function as a set of ordered pairs, through a table, and as an equation. You can also take the information in ordered pairs or in a table and represent a function as a graph.
    ::您可以通过表格和方程式代表一组有顺序的对子函数。您也可以以有顺序的对子或表格的形式接收信息,并代表一个图形函数。

    Let’s look at an example.
    ::让我们举个例子。

    The table of values below represents a function on a coordinate plane. On a coordinate plane, graph the linear function that is represented by the ordered pairs in the table below.
    ::下表所列数值表表示坐标平面上的函数。在坐标平面上,请绘制下表中定购对子所代表的线性函数图。

    x y - 4 5 - 2 3 0 1 2 - 1 4 - 3

    ::Xy-45-23012-14-3

    You can represent the information in this table as a set of ordered pairs  { ( 4 , 5 ) , ( 2 , 3 ) , ( 0 , 1 ) , ( 2 , 1 ) , ( 4 , 3 ) } .
    ::您可以以一组有顺序的对{(- 4, 5, 5, (-2, 2, 3, 0, 1), (2, 1), (4, 3)} 来表示此表格中的信息 。

    Plot those five points on the coordinate plane. Then, connect them as shown below.
    ::在坐标平面上标出这五个点,然后将它们连接起来,如下文所示。

    lesson content

    Notice that the graph of this linear function is a straight line.
    ::注意此线性函数的图形为直线。

    You can also graph a linear function if you are given an equation for that function. This will involve a few more steps. When you have an equation, you can use the equation to create a table. Then, plot several of the ordered pairs in the table and connect them with a line.
    ::如果给您给出了该函数的方程式,您也可以绘制线性函数。这将涉及几个步骤。如果您有一个方程式,您可以使用方程式来创建表格。然后,绘制表格中几个有顺序的对,并将它们与直线连接。

    Here is another example.
    ::下面是另一个例子。

    The equation y = 2 x 1  is a linear function. Graph that function on a coordinate plane.
    ::y=2x- 1 等式是一个线性函数。 图形在坐标平面上起作用 。

    First, use the equation to create a table and find several ordered pairs for the function. It is a good idea to use some negative x -values, some positive x -values and 0. For example, you can create a table to find the values of y  when x  is equal to -2, -1, 0, 1, and 2.
    ::首先,使用方程式来为函数创建表格并找到多个有顺序的对。使用一些负 x 值、一些正 x 值和 0,这是一个好主意。例如,您可以创建一个表格,在 x 等于 - 2, - 1, 0, 1, 和 2 时查找 y 值。

      y = 2 x 1
      x   y  
      2   5   2 ( 2 ) 1 = 5
      1   3   2 ( 1 ) 1 = 3
        1   2 ( 0 ) 1 = 1
      1   1   2 ( 1 ) 1 = 1
      2   3   2 ( 2 ) 1 = 3

    The ordered pairs shown in the table are ( 2 , 5 ) , ( 1 , 3 ) , ( 0 , 1 ) , ( 1 , 1 )  and ( 2 , 3 ) .
    ::表中显示的有顺序配对是(-2,-5,(-1,-3,(0)-1,(1,1)和(2,3)。

    Plot those five points on the coordinate plane. Then connect them as shown below.
    ::在坐标平面上标出这五个点,然后将其连接如下:

    lesson content

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Dana’s project, which was comparing the lengths and widths of caterpillars.
    ::更早之前, Dana 的项目给您带来了问题, 比较毛虫的长度和宽度。

    She’s put the data collected so far in a table (shown below). Can you plot these points and write the equation that models this information?
    ::她将迄今收集的数据放在一张表格中(如下表所示 ) 。 您能否绘制这些点和写出模拟这些信息的方程式?

    x  (width in cm) y  (length in cm) 2 2 3 4 4 6 5 8 6 10
     
    First, represent this information as a set of ordered pairs so that you can plot the points { ( 2 , 2 ) , ( 3 , 4 ) , ( 4 , 6 ) , ( 5 , 8 ) , ( 6 , 10 ) } .
    ::首先,将这些信息作为一组有顺序的对子表示,以便您能够绘制点 {(2),2,(3),(4),(6),(5),(8),(6),(10)}。

    Now, can you see a pattern in the table and then write the rule that describes it?
    ::现在,你能在表格中看到一个图案,然后写出描述它的规则吗?

    Notice that as x  increases by 1, y  increases by 2. So, you know that 2 x  is involved in the equation. But y  is not quite 2 x . It is 2 x 2 .
    ::注意当 x 增加 1 y 增加 2 。 所以, 您知道 2x 包含在方程中 。 但是 y 不是 相当 2x 。 它是 2x-2 。

    So the equation that models this information is 2 x 2 .
    ::因此,这种信息模型的方程式是 2x-2 。

    Next, plot the points on the coordinate plane and draw a line through them. The graph is shown below.
    ::接下来,绘制坐标平面上的点,然后通过它们绘制一条线条。图示如下。

    lesson content

    Example 2
    ::例2

    The table below represents inputs and outputs of a linear function. Can you represent this information as ordered pairs, figure out the equation for this function, and then graph the function?
    ::下表显示线性函数的输入和输出。您能否以定购对对表示此信息, 找出此函数的方程式, 然后绘制函数图 ?

    x y 1 5 2 10 3 15 4 20

    ::xy15210315420

    You can extract information from the table and represent the same information as a set of ordered pairs. The x -coordinate is the first value and the y -coordinate is the second value.
    ::您可以从表格中提取信息,并代表与一组定购对对相同的信息。 x 坐标是第一个值, Y 坐标是第二个值。

    { ( 1 , 5 ) , ( 2 , 10 ) , ( 3 , 15 ) , ( 4 , 20 ) }

    Next, looking at the information in the table, you can see that when you multiply the x -value by 5 you get the y -value. The rule is multiply x  by 5 to get y . You can write this as an equation.
    ::接下来,看看表格中的信息,你可以看到,当乘以 X 值乘以 5 时,你就会得到 Y 值。规则是乘以 x 乘以 5 以 y。你可以将此写成一个方程。

    y = 5 x

    ::y=5x y=5x

    You can graph plot the coordinates { ( 1 , 5 ) , ( 2 , 10 ) , ( 3 , 15 ) , ( 4 , 20 ) }  and draw a line through them to see the graph.
    ::您可以绘制坐标 {(1, 5, (2, 10), (3, 15), (4, 20)) 并绘制一条线以查看图表 。

    Answer the following questions about functions and coordinates.
    ::回答下列关于职能和坐标的问题。

    Example 3
    ::例3

    lesson content

    Is the function above increasing or decreasing?
    ::职能高于增加还是减少?

    Notice that as x  increases y  increases. Notice that every time you increase x  by 1, y  will always increase. In this case, y  increases by two every time x  increases by 1.
    ::注意 x 增加 y 增加 y 增加 。 注意每次增加 x 1, y 总是增加 。 在这种情况下, y 每次增加 1 增加 2 y 增加 。

    The answer is the function is increasing.
    ::答案是功能正在增加。

    Example 4
    ::例4

    In the point ( 3 , 4 )  is the x -value positive or negative?
    ::在点(-3,4)中,X值是正值还是负值?

    The x -value is the first value in the coordinate. It is a negative number.
    ::x 值是坐标的第一个值。 这是一个负数 。

    The answer is the x -value is negative.
    ::答案是x值为负值。

    Example 5
    ::例5

    In ( 6 , 7 ) , which value is y -value?
    ::在(-6,-7)中,什么值是Y值?

    The y -value is the second value in a coordinate, and it is equal to -7.
    ::Y值是坐标中的第二个值,等于-7。

    The answer is the y -value is -7.
    ::答案是Y值是 -7

    Review
    ::回顾

    The information in the table represents points from a linear function. Plot the points in the table on a coordinate plane, and then draw a straight line through them to graph each function. Then identify the rule (equation) for the function.
    ::表格中的信息代表线性函数的点。在坐标平面上绘制表格中的点,然后通过它们绘制一条直线以图示每个函数。然后为函数指定规则(等距)。

    1.   
    Input Output
    1 4
    2 5
    3 6
    4 7
    1.   
    Input  Output
    2 4
    3 6
    4 8
    5 10
    1.   
    Input Output
    1 3
    2 6
    4 12
    5 15
    1.   
    Input Output
    9 7
    7 5
    5 3
    3 1
    1.   
    Input Output
    8 12
    9 13
    11 15
    20 24
    1.   
    Input  Output
    3 21

    4

    28
    6 42
    8 56
    1.   
    Input Output
    2 5
    3 7
    4 9
    5 11
    1.  
    Input Output
    4 7
    5 9
    6 11
    8 15
    1.   
    Input Output
    5 14
    6 17
    7 20
    8 23
    1.   
    Input Output
    4 16
    5 20
    6 24
    8 32

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源