章节大纲

  • lesson content

    Running from one base to the next was a speedy 90 feet for Omar. The job of mowing the field, however, probably wasn’t so fast. Just counting the infield, how many square feet of mowing does the groundskeeper do?
    ::从一个基地跑到另一个基地,对奥马尔来说是90英尺的快速距离。 然而,耕种田地的工作可能并不那么快。 仅仅计算野外,地基管理员有多少平方英尺的耕种?

    In this concept, you will learn how to solve equations using squares and square roots.
    ::在这个概念中,你将学会如何用方块和平方根解析方程式。

    Solving Equations with Square Roots
    ::用平根解决平方平方

    You may already know that squaring a number and taking the square root of a number are opposite operations . If you know one, you can find the other. When working with area and dimensions , the equations most often used are:
    ::您可能已经知道,对数和对数的平方根进行比对是相反的操作。 如果您知道一个, 您可以找到另一个。 当使用区域和尺寸时, 最常用的方程式是 :

    A = s 2  when you know the sides and need to find the area.
    ::A=2 当你了解侧面 需要找到区域时 A=2

    s = A  when you know the area and want to find the length of the sides.
    ::s=A 当你知道那个区域 想找到两边的长度时

    In these equations, both  s and  A are variables. A variable is simply an unknown quantity represented by a letter. Any letter or symbol can be used in a math sentence as a variable. For example, the equation  y = x 2 says that some number, y , is equal to another number, x , times itself. The equation  x = y is the opposite operation and says some number, x , is equal to the square root of another number, y .
    ::在这些方程式中, s 和 A 是变量。 变量只是字母代表的未知数量。 任何字母或符号都可以作为变量在数学句中使用。 例如, y=x2 表示, 某数字, y 等于其它数字, x, 乘以它本身。 公式 x=y 是相反的操作, 表示某些数字, x 等于另一个数字的平方根, y 。

    Here is an example of how to use these equations to solve problems involving squares and square roots.
    ::这里的例子说明如何利用这些方程式解决涉及平方和平方根的问题。

    Solve for y :
    ::为 y 解决 :

    y = 5 2
    ::y=52 y=52

    First, you know that  5 2 is the same as  5 × 5
    ::首先,你知道52和5x5相同

    Next,  5 × 5 = 25
    ::下一个, 5x5=25

    Then, y = 25
    ::然后,y=25

    Your answer is 25.
    ::你的答案是25岁

    Here’s another example:
    ::以下是另一个例子:

    Solve for x :
    ::解决 x:

    x 2 = 36
    ::x2=36

    First, you know that  x is the unknown variable that you are looking for.
    ::首先,你知道 x 是您正在寻找的未知变量 。

    You may also know that in order to find  x in any equation , you need to get it on either side of the equal sign, by ITSELF. This means it cannot have anything else attached to it by any other operation, including squares.
    ::您也可能知道, 要在任何方程式中找到 x, 您需要将其放在 ITISELF 的等同标志的两侧, 也就是说它无法通过任何其他操作, 包括方形 来连接它 。

    Next, in order to isolate x , you must perform the opposite operation. Ask yourself, “WHAT is attached to the x ?” and “HOW is it attached?”
    ::下一步,为了分离 x, 您必须执行相反的操作 。 请问您自己 , “ 与 x 连接的是什么 ? ” , “ 与 X 连接的是什么 ? ” 和 “ 与 X 连接的是什么 ? ”

    Since a square is attached to the x , the square root of  x is the opposite operation.
    ::由于一个广场附属于x,x的平方根是相反的操作。

    Then, remember, that whatever you do to one side of the equation, you must also do to the other side.
    ::那么,记住,无论你对方程的一边做什么, 你也必须对另一方做什么。

    Take the square root of both sides of the equation.
    ::用方程式两边的平方根

    x 2 = 36
    ::x2=36

    Since you have been given an abstract problem to solve, be sure to include negative roots.
    ::既然您已经得到了一个抽象的问题需要解决, 请务必包括负面根。

    x = ± 6
    ::x 6

    The answer is  ± 6
    ::答案是6

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about  Omar, who was wondering about how many square feet of grass needed to be mowed.
    ::更早之前,你被问及Omar, 谁想知道需要修剪多少平方英尺的草地。

    One side of the square baseball diamond infield measured 90 feet.
    ::方形棒球钻场的一面 测量了90英尺

    First, remember the formula for area of a square.
    ::首先,记住方块面积的公式。

    A = s 2
    ::A=s2 阿=2

    Next, substitute in what you know.
    ::下一位,你所知道的替代

    A = ( 90   f t ) 2
    ::A=(90吨)2

    Then solve for A .
    ::然后解决A。

    90   f t × 90   f t = 1 , 800   s q   f t
    ::90 ftx90 ft=1 800 sqft

    The answer is 1,800 square feet. Remember that area is measured in squares.
    ::答案是1800平方英尺 记住那个区域是用方形测量的

    Example 2
    ::例2

    Solve.
    ::解决。

    x 2 + 3 = 12
    ::x2+3=12

    First, recognize that you are solving for  x and determine the best way to isolate it. In this case there is more than one function attached, a square and a 3 by addition .
    ::首先, 承认您正在解决 x , 并确定隔离它的最佳方式。 在这种情况下, 存在多个附加函数, 一个正方形和一个加3 的函数 。

    Next, determine which function to remove first from the x . Since you must do the same operation to everything on both sides of the equation, the 3 is the easiest to remove first. You do this by subtraction because it is attached by addition.
    ::下一步,决定从 x 中先删除哪个函数。 既然您必须对等式两侧的所有内容都做相同的操作, 3 是最容易先删除的。 您可以通过减法做到这一点, 因为加法是附加的 。

    x 2 + 3 3 = 12 3

    ::x2+3-3-3=12-3

    After subtracting, you have a new equation:
    ::减去后,您有一个新的方程式 :

    x 2 = 9

    ::x2=9

    Then, all that is left is to take the square root of both sides.
    ::然后,剩下的就是双方的平方根。

    x 2 = 9 x = ± 3

    ::x2=9x3

    The answer is ± 3
    ::答案是3

    Example 3
    ::例3

    Solve for y :
    ::为 y 解决 :

    y 1 = 8
    ::y-1=8 y-1=8

    First, recognize the two operations attached to the variable - a 1 by subtraction and a square root.
    ::首先,认列变量所附的两个操作 -- -- 减法1为1,平方根。

    Next, determine which operation you can perform first to both sides as a step toward isolating y .
    ::下一步,决定您可以首先对双方进行哪些操作,作为孤立 y 的一步。

    Perform the opposite of a square root by squaring both sides of the equation.
    ::与平方根对立,对立方程式两侧。

    ( y 1 ) 2 = 8 2

    :伤心y-1)2=82

    This gives you a new equation:
    ::这给了你一个新的方程式:

    y 1 = 64

    ::y - 1=64

    Then add to remove the 1 that is attached by subtraction.
    ::然后加上去掉减去后所附的1。

    y 1 + 1 = 64 + 1 y = 64 + 1 y = 65

    ::y- 1+1=64+1y=64+1y=64+1y=65

    The answer is 65.
    ::答案是65岁

    Example 4
    ::例4

    Solve for x :
    ::解决 x:

    x 2 = 49
    ::x2=49

    First, take the square root of both sides.
    ::首先,从双方的平方根开始。

    x 2 = 49
    ::x2=49

    Then, x = ± 7
    ::然后, x7

    The answer is ± 7
    ::答案是++7

    Example 5
    ::例5

    Solve for p :
    ::解决 p:

    p 2 + 5 = 174
    ::p2+5=174 (p2+5=174)

    First, subtract 5 from both sides of the equation.
    ::首先,从方程两侧减去5。

    p 2 + 5 5 = 174 5
    ::p2+5-5=174-5

    Next, rewrite the equation:
    ::下一位, 重写方程式 :

    p 2 = 169
    ::p2=169 (p2=169)

    Then, take the square root of both sides.
    ::然后,从双方的平方根开始

    p = ± 13
    ::第13页

    The answer is p = ± 13
    ::答案是p13

    Review
    ::回顾

    Solve each equation.
    ::解决每个方程式

    1. x 2 = 9
      ::x2=9
    2. x 2 = 49
      ::x2=49
    3. x 2 = 100
      ::x2=100x2=100
    4. x 2 = 64
      ::x2=64
    5. x 2 = 225
      ::x2=225x2=225
    6. x 2 = 256
      ::x2=256xx2=256
    7. x 2 + 3 = 12
      ::x2+3=12
    8. x 2 5 = 20
      ::x2 - 5=20
    9. x 2 + 3 = 39
      ::x2+3=39
    10. x 2 4 = 60
      ::x2 - 4=60
    11. x 2 + 11 = 92
      ::x2+11=92
    12. x + 1 = 10
      ::x+1=10 x+1=10
    13. x 2 + 5 = 41
      ::x2+5=41
    14. x 3 = 8
      ::x3=8
    15. x 3 + 4 = 31
      ::x3+4=31

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源