9.8 利用毕达哥里定理解决等式
Section outline
-
Gary wants to build a skateboard ramp, but it can’t be too steep. If he has a platform 3 m high and a board 5 m long, how far out should the board extend from the platform?
::Gary想建造滑板坡,但不会太陡峭。 如果他有一个高3米高的平台和一个5米长的板,董事会应该从平台延伸到多远?In this concept, you will learn how to solve equations using the Pythagorean Theorem .
::在这个概念中,你将学会如何用毕达哥伦理论解析方程式。Solving Equations Using the Pythagorean Theorem
::利用毕达哥里定理解决等式The Pythagorean Theorem states that the sum of the squares of the two legs of a right triangle is equal to the square of the hypotenuse . In a math sentence, where and are the legs and is the hypotenuse, it looks like this:
::Pytagorean Theorem指出,右三角形两腿的平方和等于下限的平方。在数学句中,a和b是双腿,c是下限,它看起来是这样的:
::c2=a2+b2 (千兆赫)Mathematically, you can use this equation to solve for any of the variables, not just the hypotenuse.
::从数学角度来说,你可以用这个方程来解决任何变量,而不仅仅是下限。For example, the right triangle below has one leg equal to 3 and a hypotenuse of 5.
::例如,下方右三角形的一条腿等于3,低于5。Solve for the other leg.
::解决另一条腿。First, you can label either leg or . Remember that the legs are those sides adjacent to the right angle.
::首先,您可以标为腿 a 或 b。 记住, 腿是右角的侧面 。Next, fill into the Pythagorean Theorem the values that you know.
::接下来,向毕达哥里安神话中填充你所知道的值。
::c2=a2+b252=32+b2Then, perform the calculations you are able to.
::然后按照你的能力进行计算
::25=9+b2 25=9+b2Remember that your goal is to isolate the unknown variable on one side of the equation. In this case it is and it is attached to a square and . Perform the necessary operations to isolate .
::记住您的目标是在方程的一面分离未知变量。 在这种情况下,它是 b, 并且它附属于一个正方形和一个+ 9 。 执行分离 b 的必要操作 。
::25-9=9+b2-916=b24=b4 回答是4Examples
::实例Example 1
::例1Earlier, you were given a problem about Gary and his skate board ramp.
::早些时候,你得到一个问题 关于加里和他的滑板斜坡。One side, the base, was 4 m and the board, the hypotenuse, was 5 m. How high would the ramp be?
::一面是基底,4米, 板,下层,5米。坡道有多高?
First, substitute .
::第一,替代。
::52=32+b2Next, perform the calculations.
::接下来,进行计算。
::25=9+b225-9=9+b2-9Then, determine the square roots.
::然后,决定平方根。
::16=b24=bThe answer is 4 m. Gary’s board should extend 4 m from the base of the platform.
::答案是4米。 Gary的董事会应该从平台底部4米宽。Example 2
::例2Solve for to the nearest tenth.
::解决b到最近的十分之一。First, take the given lengths and substitute them into the formula .
::首先,将给定长度取以给定长度并将其替换为公式。 42+b2=12216+b2=144 下一个,从方程两侧减去16。
Then take the square root of both sides of the equation.
::16-16+b2=144-16b2=128 然后取方程两侧的平方根。
::b=11.3137085... =11.3137085...Round to the tenths place
::回合到十分位
::11.3The answer is 11.3
::答案是11.3Example 3
::例3A right triangle includes the dimensions of , and . Solve for .
::右三角形包含 a, b=6 和 c=13 的尺寸。 解决 a 。First, substitute.
::第一,替代。
::c2=a2+b2132=a2+62Next, perform the calculations you are able to.
::下一步, 执行您能够完成的计算 。
::169=a2+36169-36=a2+36-36Then, determine the square roots.
::然后确定平方根 133=a211.532582594...=a11.5aThe answer is
::答案是a=11.5Example 4
::例4A right triangle with , and
::a=8,b和c=12的右三角形First, substitute.
::第一,替代。
::c2=a2+b2122=82+b2 下一个,进行计算。
::144=64+b2144-64=64+b2-64Then, determine the square roots.
::然后,决定平方根。
::80=b28.9bThe answer is 8.9
::答案是8.9Example 5
::例5A right triangle with , , and
::a=6、b和c=10的右三角形First, substitute.
::第一,替代。
::c2=a2+b2102=62+b2Next, perform the calculations.
::接下来,进行计算。
::100=36+b2100-36=36+b2-36Then, determine the square roots.
::然后,决定平方根。
::64=b28=bThe answer is 8.
::答案是8岁Review
::回顾Use the Pythagorean Theorem to find the length of each missing leg. You may round to the nearest tenth when necessary.
::使用毕达哥里安定理词查找每条缺失腿的长度。 必要时您可以绕到最近的第十条。-
::a=6,b=? c=12 -
::a=9,b=? c=15 -
::a=4,b=4,b=? c=5 -
::a=9,b=? c=18 -
::a=15,b=? c=25 -
::a=? b=10 c=12 -
::a=? b=11 c=14 -
::a=? b=13 c=15
Write an equation using the Pythagorean Theorem and solve each problem. Round to the nearest tenth when necessary.
::使用 Pythagorena 理论书写方程式, 并解决每个问题。 必要时, 圆到最近的十分 。Joanna laid a plank of wood down to make a ramp so that she could roll a wheelbarrow over a low wall in her garden. The wall is 1.5 meters tall, and the plank of wood touches the ground 2 meters from the wall. How long is the wooden plank?
::乔安娜把木板放下来做一个斜坡,这样她就可以把一把手推车翻过花园的低墙壁。 墙长1.5米,木板与墙边两米处的地面相接。木板有多长?-
Write the equation.
::写出方程式 -
Solve for the answer.
::解决答案。
Chris rode his bike 4 miles west and then 3 miles south. What is the shortest distance he can ride back to the point where he started?
::克里斯骑着自行车往西4英里,然后往南3英里。-
Write the equation.
::写出方程式 -
Solve the problem.
::解决问题
Naomi is cutting triangular patches to make a quilt. Each has a diagonal side of 14.5 inches and a short side of 5.5 inches. What is the length of the third side of each triangular patch?
::Naomi 正在切开三角形的补丁来做一个缝隙。 每人有14.5英寸的对角面和5. 5英寸的短边。 每个三角形的第三边的长度是多少?-
Write the equation.
::写出方程式 -
Solve the problem.
::解决问题
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -